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Abstract

Background: Facing planetary boundaries, we need a sustainable energy system providing its life support function
for society in the long-term within environmental limits. Since science plays an important role in decision-making,
this study examines the thematic landscape of research on sustainable energy, which may contribute to a
sustainability transformation. Understanding the structure of the research field allows for critical reflections and the
identification of blind spots for advancing this field.

Methods: The study applies a text mining approach on 26533 Scopus-indexed abstracts published from 1990 to
2016 based on a latent Dirichlet allocation topic model. Models with up 1100 topics were created. Based on
coherence scores and manual inspection, the model with 300 topics was selected. These statistical methods served
for highlighting timely topic trends, differing thematic fields, and emerging communities in the topic network. The
study critically reflects the quantitative results from a sustainability perspective.

Results: The study identifies a focus on establishing and optimizing the energy infrastructure towards 100%
renewable energies through key modern technology areas: materials science, (biological) process engineering, and
(digital) monitoring and control systems. Energy storage, photonic materials, nanomaterials, or biofuels belong to
the topics with the strongest trends. The study identifies decreasing trends for general aspects regarding
sustainable development and related economic, environmental, and political issues.

Conclusions: The discourse is latently adopting a technology-oriented paradigm focusing on renewable energy
generation and is moving away from the multi-faceted concept of sustainability. The field has the potential to
contribute to climate change mitigation by optimizing renewable energy systems. However, given the complexity
of these systems, horizontal integration of the various valuable vertical research strands is required. Furthermore,
the holistic ecological perspective considering the global scale that has originally motivated research on sustainable
energy might be re-strengthened, e.g., by an integrated energy and materials perspective. Beyond considering the
physical dimensions of energy systems, existing links from the currently technology-oriented discourse to the social
sciences might be strengthened. For establishing sustainable energy systems, future research will not only have to
target the technical energy infrastructure but put a stronger focus on issues perceivable from a holistic second-
order perspective.
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Background
For a vital society, the energy system has always been a key
component. Facing climate change in the context of
“planetary boundaries” [1, 2], it is crucial to establish a sus-
tainable energy system that can provide its life support
function for society in the long-term within environmental
limits [3–5]. This triggers the twofold question: What are
the main elements of an energy system, and what is an
optimum design of our human-made energy system, in par-
ticular, with respect to its interactions with nature [6, 7]?
As a response to this question, the normative multi-faceted
concept of sustainability has developed into a popular guid-
ing principle over the past decades [8–14]. It is expected to
lead to a socio-technical system that does not exceed the
“carrying capacity” of the natural system [9, 15].
These thoughts increasingly influence guidelines, ini-

tiatives, and policies, as shown by various examples. To
name a few, at global level, the Sustainable Development
Goals of the United Nations promote sustainability in
different sectors and, for the energy sector, propose to
“ensure access to affordable, reliable, sustainable and
modern energy” via Goal 7 [16]. Regarding the European
continent, the European Energy Strategy aims at a “sus-
tainable, competitive and secure energy system” [17]. At
a national level, examples are China´s 13th Five-Year
Plan incorporating aspects of “green development” [18, 19]
or the German Energy Transition supporting a systemic
shift towards renewable energies [20, 21]. Of course, these
examples are not final answers and face various challenges
[22–26]. However, they are steps within a transformation
towards sustainability, of which the field of sustainable en-
ergy is a crucial element.
Science has been a key initiator for the attention to sus-

tainability and is to further play an active role [6, 27–29].
The outputs of the research branch concerned with sus-
tainable energy are, therefore, precursors of a potentially
sustainable global energy system of the future. For antici-
pating the nature of this kind of system, this study ana-
lyzes the structure of the hybrid research field of energy
and sustainability. The following background briefly sum-
marizes research trends based on a high-level qualitative
review. This initial overview is extended throughout this
study by a text-mining approach.
Screening the 100 most cited scientific review articles

containing the term “sustainable energy” indexed in the
Scopus database (Digital Object Identifiers see Additional
file 1) shows that the dominant themes are electricity gen-
eration by renewables, bioenergy, storage technologies,
and especially materials science. A general observation is
that the reviews largely take a techno-economic perspec-
tive. The majority focuses on individual technologies,
discusses the technical energy infrastructure while consid-
ering the costs of energy generation, or envisions various
technological pathways.

Regarding renewable energy generation, photovoltaic en-
ergy might develop to the primary future energy source due
to expected efficiency improvements, especially through
intensive research on advancing materials for solar cells
[30–35]. Wind energy, in particular, direct-drive turbine
technology, might be the major secondary source [31–35].
In general, solar and wind-powered systems are deemed to
have tolerable effects on ecosystems [32, 33, 35]. However,
these effects will require continued attention [34, 36]. Since
fossil fuels will remain competitive in the near future, some
articles also refer to efficiency measures for fossil power
plants [34, 35]. For decarbonization, carbon capture, stor-
age, and use (CCSU), as well as nuclear energy, are also
considered, while acknowledging the lack of conclusive risk
assessments [32–35]. Several articles consider geothermal
energy as a technology that, despite the untapped potential,
has received comparably low attention [33, 34, 37]. How-
ever, the expansion of deep geothermal power generation
will require diligent risk assessments [34].
The complexity of renewable energy systems stem-

ming from intermittent and decentralized generation has
motivated research in the field of storage technologies,
modeling, and smart energy. For encountering intermit-
tency, electrochemical energy storage via batteries, fuel
cells using various storable fuels, or supercapacitors is
intensively investigated [35, 38–40]. Given the plethora
of technological options, optimization modeling tools
have become essential for the efficient, dynamic, and
economically viable planning and operation of renewable
energy systems [31, 35, 37]. In this context, some articles
propose smart energy systems as a promising techno-
economic approach for establishing efficient energy
systems by integrating thermal, gas, and electricity infra-
structure [41, 42].
The future of fuels in the transportation sector but also

other sectors seems less clear than the future of electricity
generation. Bioenergy and biotechnology for producing
biofuels have received considerable attention [43–45], es-
pecially the production of bioethanol through fermentation
of sugarcane or grains [31, 33, 46, 47]. Due to limited sus-
tainable availability of these feedstocks [33, 34], research
also investigates alternative feedstocks such as lignocellu-
losic materials or microalgae and conversion technologies
such as biorefineries or microbial reactors [33, 46, 48–56].
Another technological pathway discussed is the hydrogen
economy based on water splitting [33, 57–62]. The direct
use of hydrogen in fuel cells is a desirable long-term op-
tion; however, establishing the required hydrogen infra-
structure is challenging [34, 39, 57, 63]. Therefore,
synthesizing hydrocarbon fuels and distributing them via
existing infrastructures is discussed [33]. Another pathway
would be the methanol economy based on the yet imprac-
ticable artificial photosynthesis [63–66]. Considering this
diversity of research on fuels, the electrification of the
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transportation sector might be achieved via fuel cells in the
long-term but will probably be dominated by the already
mature battery technologies in the short-term [35, 39].
Beyond discussing energy systems at large scale, the

major share of highly cited reviews covers research on
improving or creating advanced materials for energy
technologies. Research has particularly focused on mate-
rials for batteries, fuel cells, or supercapacitors as well as
hydrogen production and storage, thermoelectric devices,
or solar cells [39, 40, 58, 63, 67–70]. In these applications,
new materials can improve the performance of anodes,
cathodes, electrolytes, catalysts, photoactive layers, diffu-
sion layers, or storage structures [55, 58, 63, 69–73]. Mate-
rials science further has the potential to find replacements
for materials with limited abundance such as noble metals
in catalysts or electrodes [61, 63, 69, 71–76], lithium in
batteries [39], or rare-earth magnetic materials in wind
turbines [35, 63]. However, this field of materials science is
often experimental, and no straightforward pathway
regarding the choice of materials has emerged [69]. As a
special field, nanoscience has become crucial for energy
technologies [63, 68]. Nanotechnology allows synthesizing
organic, inorganic, or composite structural elements such
as particles, fibers, grids, thin-films or three-dimensional
structures such as nanotubes, porous membranes, metal-
organic frameworks, or carbon gels [63, 68, 69, 75, 77–79].
Controlling the geometric, physical, chemical, or electrical
properties of materials can significantly increase the effi-
ciency or functionality of various technologies regarding,
e.g., surface to volume ratio, kinetics, conductivity, storage
capacities, or stability of materials [39, 68, 69, 75].
Beyond the above themes that represent the main

focus of the examined review articles, several themes
receive less attention. Only a few articles discuss details
regarding the conditions and developments in individual
end-use sectors. There is only one article dedicated to a
specific sector, i.e., the building sector [80]. Furthermore,
despite the focus on materials science, only a few articles
explicitly address the scalability of technologies consid-
ering the availability of chemical elements [81]. Non-
technological aspects such as potential rebound effects,
consumer behavior and energy-saving lifestyles, or polit-
ical measures are only marginally discussed [34, 35, 82].
However, regarding issues of decision-making, a few
articles deal with the details of advanced multi-criteria
decision-making methods, especially for energy system
planning [83, 84].
For extending the insights gained from the above qualita-

tive review, this study uses a quantitative exploratory text
mining approach. Qualitative reviews provide valuable in-
sights. However, they are limited in the number of articles
that can be analyzed and are, thus, selective to a certain ex-
tent. Therefore, they might not cover the full thematic
breadth in a representative way. Considering the potential

that large-scale text-based mappings of academic fields
offer [29, 85–88], this study applies a text mining approach
for detecting unknown patterns from text [89–92]. This
approach does not replace the qualitative review method
but offers a different integrated perspective that allows
large-scale quantitative analyses and is unbiased regarding
the selection of articles.
For reflecting latent paradigms in the academic field of

sustainable energy and triggering further questions from
an overarching perspective, this study quantitatively
maps the scientific discourse with regard to prevalent
topics, trends, and research communities. For this pur-
pose, it applies a probabilistic topic modeling approach
[93–95]. Several studies used topic modeling for investi-
gating, e.g., research on hydropower [96], transportation
[97], or knowledge flows in energy research in general
between researchers in Asia and the USA [98]. However,
topic modeling has not yet been applied for a broad
mapping of research on sustainable energy. This study
uses this method for analyzing research trends quantita-
tively without specifying themes a priori. In addition, it
highlights the interconnections between topics and de-
tects research communities. Thereby, it extends other
applied topic modeling studies. There are a few studies
dealing with correlations of topics that, however, follow
a methodological but less a content-related interest [85].
So far, applied topic modeling studies usually do not
highlight topic co-occurrence [87, 88, 96–98]. Moreover,
while other text mining studies often focus on reporting
quantitative results [86, 96–98], this study goes further.
It critically reflects the modeling results by a detailed
qualitative discussion from a sustainability perspective.
Using this large-scale approach, this study provides a

new overall picture of the scientific discourse on sustain-
able energy. Beyond reporting and discussing themes
side by side as it is done, e.g., in several of the studies
screened above, it ranks thematic trends and provides a
not yet available quantitative indication where the dis-
course is heading. It improves the understanding of the
structure of the research field and assesses the integra-
tion of sustainability elements therein. This study can
confirm several of the trends identified in the above litera-
ture review, show some in a different light, identify new
trends, and point out blind spots to support advancing re-
search on sustainable energy. In general, this study shows
that the discourse is latently adopting a technology-
oriented paradigm and is moving away from the multi-
faceted concept of sustainability. Based on this empirical
evidence, it highlights several important perspectives to be
considered in future research and enables adjusting re-
search priorities from a holistic sustainability perspective.
The rest of this paper is organized as follows. The sec-

tion “Materials and methods” provides details on the text
data used. It also explains and reflects the text mining
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methodology. The section “Results” presents the output of
topic modeling regarding the timely trends, thematic
fields, and the network of topics. The section “Discussion”
examines the findings concerning selected energy system
stages and principles of sustainability. It further relates
the results to the above background and selected litera-
ture. The final section provides summarizing conclusions.

Materials and methods
This section summarizes the applied text mining method-
ology and provides reflections on methodological limitations
and prospects. Additional file 1 provides comprehensive
technical details on the methodology and underlying statis-
tical models. The code for this study was written in R [99].
The code and, to the extent permitted by copyright, the data
used are available in an open-source repository [100].

Data—Scopus abstracts
The database of this study consists of 26,533 Scopus-
indexed abstracts of original journal articles published in
the period from 1990 to 2016 whose abstracts, titles, or
keywords contain the terms sustainab* and energy. The
exact search phrase used in November 2017 for collect-
ing data was “TITLE-ABS-KEY(sustainab* AND energy)
AND NOT INDEX(medline) AND (LIMIT-TO (DOC-
TYPE, “ar”) OR LIMIT-TO(DOCTYPE, “ip”)) AND
(LIMIT-TO(SRCTYPE, “j”))”. The following pre-selection
criteria served to exclude non-representative or low-
quality entries: (i) minimum length of 200 characters per
abstract and (ii) no duplicate entries regarding title,
abstract content, or EID number. By using Scopus as a
bibliometric database with less strict criteria for entering
the index system in contrast to, e.g., Web Of Science,
this study potentially covers a broad range of emerging
lines of thought [101, 102]. A disadvantage of Scopus is
the current limitation of bulk downloads making manual
iterative downloading necessary.

Overview of the topic modeling methodology
The core of the methodological sequence programmed
for this study is the basic latent Dirichlet allocation
(LDA) [103] model. Considering the family of probabilis-
tic topic models [93–95], LDA is one of the basic models
that has successfully been applied for, e.g., identifying
key topics in scientific discourses [87, 88, 96–98]. Given
a corpus, i.e., a collection of documents, LDA assumes
that each document is a mixture of topics and that each
topic is a mixture of words [93]. These mixtures are
probability distributions. Each topic has a certain prob-
ability of appearing in a specific document. Also, each
term of the whole corpus has a certain probability of
belonging to a specific topic. The posterior distributions
inferred by LDA are stored in probability matrices. For in-
stance, the document topic matrix has rows representing

documents and columns representing topics, while each
entry shows the prevalence of a topic in a given document.
LDA uses a generative algorithm for inferring the poster-
ior distributions that represent a fitted model for a corpus.
This kind of distributions can be analyzed and coupled
with other meta-data of documents, e.g., the year of publi-
cation. For this study, the methodological sequence covers
(i) pre-processing the raw abstracts for increasing the
quality of the input data, (ii) topic modeling using LDA,
and (iii) analysis of the output regarding topic trends over
time, differing thematic fields in the corpus, and topic
communities emerging from the network of topics.

Pre-processing
An advanced pre-processing procedure served for increasing
the data quality of the raw texts. First, several natural lan-
guage processing (NLP) steps served for standardizing the
symbolic representation and harmonization of individual
terms. Second, using the TreeTagger software [104–106]
and the koRpus package [107], a part-of-speech (POS)
model served for identifying the grammatical structure of
sentences in order to discard irrelevant word classes, here,
everything but nouns, verbs, adjectives, and adverbs, and to
lemmatize terms. An example of lemmatization, a method
for the unification of terms, is provided in Additional file 1.
Third, a collocation model detected n-grams, i.e., multi-
word terms occurring to a statistically relevant degree in the
corpus, to mitigate the assumption regarding the irrelevance
of grammar by LDA (explanation see the following section).
Collocation detection was performed for noun compounds
[108] using pointwise mutual information (PMI) [109] and
log-frequency biased mutual dependency (LFMD) [110] as
statistical metrics for detecting meaningful collocations. In
the final pre-processing step, the vocabulary of the corpus
was pruned by setting thresholds for document occurrence
of terms and term length and by removing stopwords, e.g.,
“and,” “the,” or “methodology.” By using this kind of ad-
vanced pre-processing procedure beyond common methods
such as stemming or setting minimum term length thresh-
olds, this study advances pre-processing procedures of previ-
ous studies with similar scope [87, 88, 96, 97].

Topic modeling
Latent Dirichlet allocation
As input to LDA, the pre-processed corpus was vectorized
to a document-term-matrix (DTM) representing the counts
of individual terms per document. The pre-processed cor-
pus contained 2,018,059 terms in total and 28,768 unique
terms. Vectorizing text means that, before topic modeling,
a bag-of-words model is adopted assuming that grammar is
negligible. The collocation model used here (see the previ-
ous section) mitigates this assumption.
For finding a suitable LDA model, several models were

created by varying one of the key parameters, i.e., n, the
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number of topics assumed for the corpus. A common
challenge of any modeling approach is that there is not
only one single model that potentially fits the data. Vary-
ing n served to create a set of models, from which a
model with a potentially good fit could modeling. LDA
models were generated for n from 5 up to 1100 in steps
of 5. Apart from the parameter n, there are two add-
itional key parameters of LDA models. The hyper-
parameter α, which determines the granularity of the
topic distribution over documents, was set to α = 50/n,
and β, which determines the specificity of topics, was set
to β = 0.1. These hyper-parameter settings have been
proposed by Griffiths and Steyvers in a study with simi-
larly broad scope and size of the corpus [88], which is
one of the central references in the field of topic model-
ing. The chosen values create a model assuming that
documents consist of a few key topics and topics consist
of a few key terms. This assumption behind these values
fits the characteristics of scientific abstracts covering a
broad field, here, sustainable energy. For comparison,
setting smaller values can be reasonable for studying
specific narrower fields. For instance, a study of 17,163
scientific articles on transportation research applied
values of n = 50, α = 5/n, and β = 0.01 for modeling
sparser distributions of topics and words [97]. Having
adjusted the above settings, the comparably fast
WarpLDA algorithm [111, 112] served for creating the
LDA models. This algorithm allowed creating a large set
of models within an acceptable time.

Model selection via coherence
Six different topic coherence metrics programmed in R
for this study [100, 109, 111, 113–119] and a Wikipedia-
based reference corpus served for selecting the most
suitable LDA model from the set of models created. The
maximum model likelihood or subjective choices are
often the basis for model selection [88, 96, 97]. Max-
imum likelihood models may produce topics with com-
parably low interpretability [112]. Therefore, this study
uses coherence metrics as rational selection criteria.
Considering general consistency metrics for evidential
support [116, 120], Röder et al. proposed a framework
for calculating coherence scores of topic models [115].
The basic idea is to pick the top topic terms and to
check to what extent their co-occurrence in a reference
corpus is statistically related. This study uses the top 10
words per topic. For calculating the coherence of the
complete LDA models, the mean was used for aggregat-
ing topic scores.
For the intrinsic coherence metrics, logratio [114, 115]

and probabilistic difference (DIF) [116, 117], the corpus
of the investigation itself served as the reference corpus.
For the extrinsic metrics, 1,737 thematically related Wikipe-
dia articles served as the reference corpus. The extrinsic

used metrics are pointwise mutual information (PMI)
[109, 118], normalized PMI (NPMI) [119], cosine similar-
ity of NPMI vectors (NMPI COSIM) [111], and cosine
similarity of NPMI vectors to the sum of the NPMI
vectors [115]. These reference articles were selected via
snowball sampling, beginning with manually selected the-
matically relevant portal pages. A web scraping algorithm
using the WikipediR package [121] served for download-
ing these articles.

Methods for analyzing the topic model
Topic trends
This study examines the timely trends of individual
topics by coupling the date of publication of individual
documents with the posterior probability distribution
matrix of topics over documents. For revealing “hot
topics” and “cold topics” with increasing or decreasing
trends [88], linear models were fit for each topic over
the selected time period from 1990 to 2016. This ap-
proach has been used in other studies [88, 96, 97, 122].
In addition, this study facilitates the visual inspection of
trends by generating smoothed trend lines using locally
weighted polynomial regression (LOESS) applied to the
mean values of topic probabilities per year [123, 124].
The corrected Akaike Information Criterion (AICc) served
for automatically selecting the smoothing span [125, 126].
For highlighting key trends, this study focuses on the

topics with the strongest positive or negative trends as
well as on topics with the highest abundance. Here, a
strong positive trend means that the slope of the linear
trend line was equal to or above the 95% quantile regard-
ing the slopes of all topics. The topics with the strongest
negative trend were identified using the 5% quantile as a
threshold. Further, the abundance of a topic is defined
here as the cumulative sum of topic probability over all
years and documents. Topics with the highest abundance
were identified by limiting the topic selection to the topics
with a positive linear trend and setting the 95% quantile
regarding abundance as a threshold.

Inter-topic distance and thematic fields
The next analytical step analyzes how individual topics are
embedded in the context of all other topics and highlight
differing thematic fields. For this purpose, the inter-topic
distance, hence, the content-related (dis-)similarity be-
tween each pair of topics, was calculated. On this basis,
the topics can be clustered into the most different the-
matic fields of the corpus. For evaluating the distances be-
tween the probability distributions given in the columns
of posterior distribution matrix of terms over topics, i.e.,
the topic pairs, the Jensen Shannon Divergence was used
as a symmetric similarity metric [127, 128]. Classical
multidimensional scaling of similarities [129–131], also
called principal coordinates analysis [132], then served to
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project the distance between topics into a two-
dimensional space. This step uses an adaption of the code
of the LDAvis package [133, 134]. In addition, hierarch-
ical clustering using Ward’s method [135, 136] was
applied to the resulting coordinates for detecting the
most different thematic fields or discourses.

Topic network and topic communities
A network analysis served for analyzing connections be-
tween topics within the individual documents and for identi-
fying major research communities. The co-occurrence of
topics, which indicates how often each topic co-occurs with
each other topic, can be calculated as the cross product of
the posterior document topic distribution matrix. The
resulting adjacency matrix constitutes the network of topics.
Since LDA assumes a distribution of all topics over all docu-
ments, the network is very dense. Documents usually in-
clude few topics with high probability but also many with
low probability. Hence, following the assumptions of LDA,
all topics are somehow connected to all other topics.
For a focused analysis of key linkages only, the study ap-

plies several restrictions. To highlight stable or emerging
trends, the network is restricted to topics with a positive
trend. Furthermore, two types of thresholds serve for
pointing out the strongest connections. First, only the top
topics per document were included. Second, only co-
occurrence values equal or larger than a pre-defined co-
occurrence threshold were considered, whereas values
below the thresholds were set to zero. Setting thresholds
in network analyses is a sensitive issue. Therefore, several
networks were generated and compared by setting differ-
ent thresholds. The comparison included a variation of
the top topics per document threshold between 2, 5, and
10 and of the co-occurrence threshold between the 0%,
25%, 50%, and 75% quantile respectively.
The analysis of the resulting network was carried out by

calculating the betweenness centrality metric for each topic
and applying network community clustering. Topics with
high betweenness may be interpreted as bridges [137] or
influential nodes regarding network communication [138].
Finally, the Louvain hierarchical clustering algorithm
[139, 140] served for detecting communities of multiple
topics, which represent research communities. The al-
gorithm uses the idea of maximizing the modularity of
a partitioned network [141]. Modularity measures the
degree of cross-linking within communities in relation
to the degree of cross-linking between communities
[141–143]. Communities of topics represent sub-networks
that stand out of their environment due to their high
within-community cross-link density [139].

Methodological limitations and prospects
A basic limitation arises from the database that covers a
specific type of research output. Beyond journal articles,

the scientific discourse comprises other relevant com-
munication channels not covered here such as confer-
ences, open web archives, or websites. Hence, this study
provides a comprehensive review of relevant research
but is limited to the part of the discourse accessible via
standardized databases. Furthermore, the study is based
on a single search phrase. A more complex but laborious
approach might use a variation of search phrases and
comparatively analyze the resulting sets of documents
for establishing an even more differentiated picture.
Key methodological limitations stem from using a

particular type of topic model with a specific set of model
parameters. As in several other studies with similar scope
[87, 88, 96, 97], the basic LDA model produced reasonable
insights. Variations of the basic model might provide ex-
tended insights, e.g., the dynamic topic model that allows
studying the internal development of topic topics over
time [144]. Furthermore, varying the hyper-parameters or
even using asymmetric hyper-parameters [145] leads to a
broader set of topic models, from which a potentially
improved model might emerge. For selecting the most ap-
propriate model, this study applies an advanced approach
based on coherence metrics. Research regarding suitable
combinations of metrics, reference corpora, and param-
eter settings for different contexts is ongoing [115] and
might lead to improved or more broadly proven options
for identifying good models.
The probably most notable limitation is the human fac-

tor deciding whether the chosen LDA model based on
machine learning creates a reasonable lens for interpreting
the data. Computers perform a significant dimensional re-
duction of the complex meanings contained in texts via
LDA. Human interpretations of resulting topics have to be
made carefully and might even be misleading [146]. Topic
models are a “lens” for understanding a corpus [147]. For
finding a sufficiently clear lens that allows for useful inter-
pretations, a suitable combination of the data set, model
parameters, and content-related background knowledge is
required [147, 148]. This study is not exempt from criti-
cism regarding the combination applied. This study uses a
lens created by iterative model adaption based on the
interaction between machine learning and human inter-
pretations. Admittedly, not all of the resulting individual
topics were perfectly interpretable. However, for the ma-
jority of topics, the general meaning seemed to be clear in-
tuitively. Since this study aims at identifying large-scale
patterns, the lens adopted here was deemed an acceptable
basis for further high-level interpretations.

Results
Number of articles over time
For an overview of publication dynamics, the cumulative
number of abstracts over time was modeled as an exponen-
tial curve shown in Fig. 1a. Publication activities before
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1990 were sparse. To avoid fitting noise around the base-
line, the models created for this study, including the topic
models, only consider the documents published since 1990.
For modeling publication dynamics, different models were
compared, of which the exponential model cum _ n =
8.6037e − 158 ∗ exp(0.18445 ∗Year) had the best fit with a
high R2 of 0.9996 and a mean relative error of 10%. This ac-
curacy seems acceptable for a simple descriptive purpose.
In addition to the cumulative numbers, Fig. 1b shows the

number of publications per year. Furthermore, Fig. 1c
shows the steep growth compared to the publication dy-
namics retrieved by using only the search term energy.

LDA model coherence
After having evaluated the coherence scores and
screened the top topic terms of the various LDA
models, the model with 300 topics appeared to be the
most appropriate. The coherence metrics DIF, NPMI,

Fig. 1 a Cumulative number of Scopus-indexed journal articles per year, which contain the search terms sustainab* and energy; records before
1990 are just shown as supplementary information and have not been included in any of the modeling procedures of this study. b Number of
articles per year. c Comparison of the cumulative number from a on a semi-logarithmic scale to the cumulative number of articles retrieved from
using the single search term energy; the graphical presentations in a and b are inspired by and allow a direct comparison to [96]
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and NPMI COSIM were the most informative in the
sense of showing comparably clear maxima. Figure 2
shows the scores of the fitted LDA models. For direct
comparison, scores are normalized. For all metrics,
maxima are recognizable for models with up to 55
topics. Manually examining the top topic terms of the
corresponding models revealed easily interpretable
topics. However, these general topics with a coarse
resolution did not provide sufficient insights for in-
vestigating, e.g., individual disciplines or technologies.
Aiming at a higher level of detail here, the models
with the clearest maxima beyond 55 topics were ex-
amined manually. The DIF metric, which measures
coherence on a document level, proposed to use the
model with 200 topics, whereas the NPMI metric,
which measures coherence at the sentence level, proposed
to use the model with 300 topics. Manual inspection of
these models led to the decision to study the model with
300 topics since it provides a higher resolution regarding
individual fields. As an example, the model with 200
topics contains an integrated topic on solar energy ad-
dressing photovoltaic systems and solar thermal energy
together. The model with 300 topics generated two separ-
ate topics for these two fields.

Topic trends
There are 137 hot topics, of which the 15 topics with
the strongest positive trends address specific technical
fields revolving around the following superordinate
themes: electrical energy storage, fuel cells, photocata-
lytic hydrogen production, nanotechnology, chemical ca-
talysis, digital network communication, motion energy
harvesting, sustainable concrete, biofuels, optimization,
and modeling. Generally, the topics tend towards mate-
rials science. Table 1 lists information on the 15 topics
with the strongest positive trend. Figure 3a visualizes the
topic trends of the top 5 hot topics. Details on p values
and the linear slopes of the trend lines are available in
the Additional file 1. The p values for the slopes are all
below p = 1e−12 and indicate the significance of the
trends.
The topics with the highest abundance include topics

speaking of life cycle assessment, heating systems, and
urbanization. Table 2 lists information on the highly
abundant topics. Four topics with high abundance also
belong to the group of topics with the strongest positive
trends (see Table 1). Those address energy storage, ca-
talysis, building materials, and general aspects concern-
ing optimization. The three additional topics without

Fig. 2 Normalized coherence metrics for a varying number of topics based on Wikipedia reference corpus; vertical dashed lines mark peaks
indicating potentially optimal numbers of topics proposed by different metrics
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such overlap address: sustainable urbanization at city
and neighborhood scale at rank 2, life cycle analysis with
a focus on environmental impacts at rank 3, and heating
systems including cooling options at rank 6.
There are 163 cold topics, of which the 15 topics with

the strongest negative trends address a mixture of

aspects regarding sustainable development and related
economic, environmental, and political issues from a
practical and theoretical perspective. This includes issues
of international cooperation and trade, legislation and
regulation, electricity markets, economic growth and
quality of life, rural areas, agricultural systems, and

Table 1 Hot topics with the strongest positive trend

Topic
no.

Slope
rank

Superordinate
theme

Topic interpretation Top 20 topic terms ordered by decreasing probability for each topic

57 1 Electrical energy
storage

Materials for electrochemical energy
storage via batteries or supercapacitors

electrode, battery, carbon, electrolyte, electrochemical, cycle, cell, cathode,
energy_storage, low_cost, electrode_material, report, anode, discharge,
lithium, exhibit, supercapacitor, material, redox, graphene

13 2 Fuel cells Materials for catalysis in fuel cells catalyst, activity, electrochemical, graphene, active, electrocatalyst, cobalt,
efficient, surface, exhibit, highly, stability, report, electrode, platinum, fuel_
cell, oxidation, active_site, superior, catalytic

63 3 Hydrogen
production

Photosensitive materials and
photocatalysis for water splitting

tio_two, photocatalyst, semiconductor, photocatalytic, tio, water_splitting,
visible_light, photo, cds, exhibit, photocatalysis, degradation, electron,
solar_energy, dye, light, photoanode, band, photocurrent, report

154 4 Nanotechnology Synthesis of nanomaterials scan, characterize, synthesis, nanoparticle, prepare, sample,
characterization, technique, synthesize, zno, obtain, confirm, property,
morphology, precursor, material, ion, x_ray_diffraction, observe, oxide

109 12 Nanotechnology Properties of materials material, structure, property, nanomaterial, molecule, bond, nano,
functional, compound, shell, sulfur, molecular, formation, exhibit, surface,
unique, excellent, electron, report, layer

262 15 Nanotechnology Structure of nanomaterials particle, polymer, nanoparticle, nanocomposite, preparation, fabrication,
powder, size, prepare, porous, spray, synthesis, matrix, agent, formation,
poly, highly, silica, simple, rgo

242 5 Chemical
catalysis

Chemical catalysis for various types of
reactions

reaction, catalyst, catalytic, methanol, oxidation, ligand, conversion,
complex, compound, intermediate, selective, catalysis, acid, synthesis,
yield, oxygen, chemical, highly, metal, molecular

255 6 Digital network
communication

Wireless sensor networks and real-time
data for energy applications

algorithm, node, power, network, wireless, transmission, protocol, energy_
harvesting, user, communication, technique, sensor, sensor_node,
spectrum, data, scheme, channel, battery, maximize, distribute

111 7 Mechanical
energy
harvesting

Triboelectric nanogenerator and
piezoelectric effect for small scale
applications

mechanical, power, teng, powered, harvest, device, motion, vibration,
energy_harvesting, sensor, flexible, output, generate, electrical, circuit,
electronics, power_source, magnetic, drive, piezoelectric

125 8 Sustainable
building
materials

Alternative blendings or replacement
materials for cement

concrete, cement, brick, material, aggregate, strength, fly_ash, property,
durability, mortar, compressive_strength, binder, block, sand, produce,
lime, replacement, clay, replace, specimen

253 9 Biofuels Biofuel from algal biomass biodiesel, microalgae, algae, biodiesel_production, lipid, cultivation, algal,
yield, produce, feedstock, culture, microalgal, transesterification, nutrient,
biofuel, oil, fuel, potential, algal_biomass, content

251 10 Biofuels Production of biomethanol by
fermentation of biomass

fermentation, sugar, pretreatment, glucose, enzyme, yield, obtain,
cellulose, hydrolysis, produce, lignin, substrate, lignocellulosic_biomass, g_
l, pulp, carbohydrate, biomass, pretreated, ethanol, acid

172 13 Biofuels Bio-based materials from
lignocellulosic feedstocks

extraction, separation, solvent, extract, acid, lignin, recovery, cellulose,
liquid, leach, water, yield, ionic_liquid, compound, chemical, surfactant,
step, distillation, separate, recover

74 14 Biofuels Biogas production from anaerobic
digestion

bioga, anaerobic_digestion, produce, methane, manure, sludge, biogas,
fertilizer, substrate, bioga_production, digestate, biomethane, organic_
waste, food_waste, digester, bioga_plant, anaerobic, digestion, biogas_
production, compost

90 11 Modeling and
optimization

Optimization models and algorithms
for power systems operation and
markets

optimal, optimization, optimize, constraint, minimize, algorithm, objective,
maximize, solution, scheduling, multi_objective, optimization_model,
solve, minimization, formulate, objective_function, search, simultaneously,
trade, genetic_algorithm

Topics equal to or above the 95% quantile regarding the slope of the linear models; topics are clustered according to superordinate themes; the order of themes
follows the topic with the highest rank belonging to a theme; rank 1 indicates the topic with the strongest positive trend

Bickel Energy, Sustainability and Society            (2019) 9:49 Page 9 of 23



forestry. Also, nuclear energy is among the cold topics.
Table 3 lists information on the 15 coldest topics with
the strongest negative trend. The p values for the slopes
are all below p = 1e−6 and indicate the significance of
the trends. The topic trends of the top 5 cold topics are
visualized in Fig. 3b.

Inter-topic distance and thematic fields
The topics with a positive trend may be clustered
into four major thematic fields highlighting the gen-
eral topic (dis-)similarity. The inter-topic distance

presented in Fig. 4 is independent of the prevalence
of topics. It merely shows the content-related distance
(see also section “Materials and methods”). The clus-
tering dendrogram, which is provided in Additional
file 1, suggested to partition into the following clus-
ters: (1) low-carbon transitions and decision-making,
(2) monitoring and optimization, (3) materials science
and process engineering, and (4) (renewable) power
systems. While highlighting thematic fields, Fig. 4 also
provides a more general overview of topics with a
positive trend that is not limited to the top trends as
the results of the previous section.

Fig. 3 Topic trend plot; the 5 topics with the strongest positive trend (a) or strongest negative trend (b); the slope rank of 1 indicates that the
slope of the linear trend line has the highest overall value and a rank of 300 indicates the lowest value; dots represent the mean topic probability
per year; the solid lines show AICc-optimized LOESS-smoothed trend lines; the dashed lines show the linear trend lines based on fitting linear
models on the topic probabilities per year (not the mean values); since publication rates increase over the years (see Fig. 1b), the recent years
have a stronger influence on the linear trend lines than earlier years
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Topic network and topic communities
Connections between topics and resulting topic commu-
nities were studied by means of the network generated
from the top 10 topics per document with the co-
occurrence threshold set to the 50% quantile. The rea-
soning for selecting this network by manual inspection
from the variation of networks was to study a network
that potentially includes broad thematic connections that,
at least, have a medium connection strength. Figure 5
shows the network with a focus on topic communities and
betweenness centrality scores. The figure only shows a se-
lection of the strongest connections between individual
topics for providing a general impression of the intercon-
nectedness. A detailed analysis of individual connections is
not provided here and might be the subject of future stud-
ies. The emerging topic communities discussed below were
similar in meaning across the generated network variations.
Hence, the information provided on topic communities can
be considered robust within the range of the tested parame-
ters. However, the betweenness centrality scores changed
with varying co-occurrence thresholds. The findings based
on the analysis of these scores are only valid for the specific
parameter settings used here.
Inspecting the labels of the network community vertices

(Fig. 5) reveals four topic communities A to D addressing
biofuels, materials science, renewable power systems, and
sustainability transitions. Community A links topics about

feedstocks and biological process engineering for biofuels to
reduce greenhouse gas emissions. In this context, a vital task
of process engineering is optimizing operational performance
for achieving the maximum yield. Target products are bio-
mass or liquid and gaseous biofuels, including hydrogen.
Community B focuses on materials science for different fields
of application. This community involves the highest number
(8 out of 15) of topics with strong trends (Table 1) in com-
parison to other communities. Aspects covering chemical
synthesis and catalysis in general, thermal treatment, or pe-
culiarities at the nanoscale are linked to more specific fields
of application such as photochemistry and photonics, elec-
trochemistry, building, or composite materials. Community
C links topics concerned with monitoring and optimization
of renewable power systems considering technologies such
as wind, photovoltaic, or geothermal energy, but also electric
vehicles. For this dynamic task, the topics of this community
address digital monitoring solutions for analyzing, simulating,
and forecasting production and demand in order to optimize
operational performance, e.g., in smart grids. Community D
revolves around assessment and decision-making for sustain-
ability transitions. This community does not include any of
the topics with the strongest positive trends (Table 1). The
community involves setting up transition initiatives, strat-
egies, or frameworks. These activities are informed by life
cycle assessments regarding environmental impacts from
energy consumption, especially in terms of carbon

Table 2 Highly abundant topics

Topic
no.

Abundance
rank

Superordinate
theme

Topic interpretation Top 20 topic terms ordered by decreasing probability for each topic

57* 1 Electrical
energy
storage

Materials for electrochemical energy
storage via batteries or
supercapacitors

See Table 1

100 2 Urbanization Cities, districts, and urban planning city, urban, urban_area, urban_development, urban_planning,
urbanization, urban_metabolism, urban_form, urban_sustainability,
neighbourhood, district, sustainable_urban, density, urban_
environment, urban_design, sustainable_urban_development,
residential, scale, urban_ecosystem, spatial

276 3 Life cycle
assessment

Environmental life cycle assessment
with focus on carbon footprints

lca, environmental_impact, impact, life_cycle_assessment_lca, life_
cycle, impact_category, life_cycle_assessment, emission,
environmental_performance, stage, global_warming_potential, gwp,
functional_unit, assess, environmental_burden, category,
environmental, impact_assessment, perform, phase

242* 4 Chemical
catalysis

Chemical catalysis for various types of
reactions

See Table 1

90* 5 Modeling and
optimization

Optimization models and algorithms
for power systems operation and
markets

See Table 1

30 6 Heating and
cooling

Low temperature heating, cooling
and efficiency technologies

heat, cool, heating, heat_pump, temperature, cooling, thermal, fluid,
performance, heat_exchanger, heating_system, waste_heat, heat_
recovery, absorption, air, heat_transfer, operate, low_temperature,
cycle, condenser

125* 7 Sustainable
building
materials

Alternative blending or replacement
materials for cement

See Table 1

Topics equal to or above the 95% quantile regarding the cumulative sum of topic probability (quantile is based on topics with positive slope only); rank 1
indicates the topic with the highest cumulative sum; topic marked with an asterisk also belong to the topics with the strongest positive trend (see Table 1)
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Table 3 Cold topics with the strongest negative trend

Topic
no.

Slope
rank

Superordinate
theme

Topic interpretation Top 20 topic terms ordered by decreasing probability for each topic

254 300 Sustainable
development

Global developments of humanity
and natural resource use

world, earth, environment, natural_resource, human, future, global,
sustainable_development, resource, energy_resource, man, population,
planet, nature, humanity, today, problem, life, population_growth, future_
generation

280 291 Development in Asiaa sustainable_development, promote, japan, environmental_protection, put,
forward, comprehensive, progress, economic_development, promotion,
utilization, japanese, coordination, government, national, realize,
establishment, protection, country, developmental

51 299 Agriculture Production of food crops and the
extent of using agrochemicals

agricultural, agriculture, crop, farmer, farm, farming, organic, input,
agricultural_production, food, cultivation, pesticide, productivity, crop_
production, production_system, agricultural_system, fertilizer, farming_system,
intensive, agroecosystem

104 298 International
cooperation

International technology transfer
and financial support mechanisms

country, access, promote, policy, international, support, government,
incentive, mechanism, priority, market, technology_transfer, clean_
development_mechanism, institution, lack, domestic, finance, encourage,
provision, experience

252 297 Rural areas Livelihood and development of
rural communities

rural, village, poor, rural_area, livelihood, people, local, traditional, income,
district, settlement, poverty, region, area, rural_development, access,
indigenous, situation, population, rural_community

225 296 Nuclear energy Potentials and risks of nuclear
power

nuclear, nuclear_power, nuclear_energy, safety, future, japan, nuclear_power_
plant, korea, risk, disaster, energy_source, electricity, fossil_fuel, option, korean,
plan, safeguard, today, energy_mix, century

10 289 Nuclear energy Nuclear energy technology reactor, fuel, fuel_cycle, core, fusion, uranium, fast_reactor, spend, advanced,
safety, plutonium, nuclear_energy, reprocess, cycle, neutron, thorium, nuclear,
nuclear_fuel, lwr, nuclear_fuel_cycle

207 295 Population Quality of life in the context of
population growth

population, people, live, world, life, grow, century, billion, planet, today,
society, billion_people, poverty, living, quality_life, health, decade, bring, old,
global

31 294 Welfare Welfare effects of economic
growth and green growth

economy, economic, growth, employment, economic_growth, gdp,
economic_activity, job, welfare, income, economics, wealth, decoupling,
country, social, industrial, labor, green_growth, natural_resource, create

161 293 Human
environment
systems

Relationship between human
activities and ecosystems

human, natural, ecosystem, nature, ecological, biological, human_activity,
relationship, organism, biophysical, matter, theory, natural_capital, life,
resilience, human_society, biosphere, natural_environment, regenerative,
environment

185 292 International
economic
relations

International trade with a focus on
the USA and Asia

country, trade, domestic, export, import, international, world, global,
cooperation, economic_development, asia, usa, asian, developed_country,
nation, economy, foreign, commodity, international_trade, trading

221 290 Regulation Legislation and institutional
authority

regulation, law, regulatory, government, legal, institutional, institution,
international, rule, political, act, public, legislation, policy, protection, authority,
state, reform, effort, national

85 288 Turkish energy
system

Potentials and resources of the
Turkish energy system

turkey, renewable_energy_source, fossil_fuel, country, energy_demand,
import, renewable_energy, energy_source, renewable_energy_resource,
domestic, grow, world, energy_supply, energy_resource, potential, rapidly,
turkish, renewable_source, renewable, supply

49 287 Energy markets Restructuring of electricity markets
and competition

market, industry, competition, reform, producer, sale, competitive, electricity_
market, competitiveness, restructuring, create, price, sell, revenue, trading,
promote, demand, enter, expansion, government

217 286 Forestry Forest management for biomass
production

forest, wood, forestry, timber, harvest, forest_biomass, forest_management,
harvesting, management, wood_product, log, deforestation, finland, forest_
resource, woody_biomass, fire, manage, forest_ecosystem, forest_product,
conservation

Topics equal to or below the 5% quantile regarding the slope of the linear models; rank 300 indicates the topic with the strongest negative trend
aThe top topic terms refer to Japan, however, examining the abstracts associated with the topic showed that the topic addresses the geographical context of
Japan including, e.g,. China
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footprints, as well as water consumption. The community
particularly considers consumer decisions in an urban
context as well as business development, e.g., regarding
supply chains or business barriers and opportunities.
Analyzing betweenness centrality scores provides in-

dications concerning key bridging topics in the net-
work. Topics dealing with simulation and forecasting,
especially in the context of controlling electric grids,
have a strong interconnecting role. This also applies
to carbon footprints and climate change mitigation.
In this context, business opportunities and barriers
are other cohesive themes. Additional file 1 provides
further details on betweenness centrality scores and
the topics with high scores.

Discussion
The selected LDA model with 300 topics provides indica-
tions on the strongest topic trends, inter-topic distances
or general thematic areas, and topic communities in the
research field dedicated to sustainable energy. Regarding
the high publication rates (Fig. 1), this research field can
be considered as dynamically growing. This is encouraging
considering the severe global sustainability problems
caused by the current energy system [5]. For solving these
problems, it will be crucial that energy research further
contributes to a transformation towards sustainability and
advances its research structure.
In this context, the following sections discuss selected

results of this study critically. The patterns recognizable
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in the results are starting points for various interpreta-
tions that emerge when relating these patterns to or
underlining them with selected literature, including but

not limited to some of the articles reviewed in the
“Background” section. As indicated already, this study
can confirm several of the trends summarized in the

Fig. 5 Topic network highlighting four topic communities A to D that emerge from Louvain network clustering; network generated by limiting
to top 10 topics per document and setting minimum threshold for co-occurrence to the 50% quantile (see section “Methods for topic model
analysis” for details); plotting parameters: (i) line width of connections proportional to co-occurrence, (ii) plot limited to the top 1.5% strongest
connections, (iii) topics with strongest positive trends (see Table 1) in bold letters, (iv) graph shows two link types, connections are plotted in dark
grey when both topics of a pair have a strong positive trend; connections are plotted in light grey if only one of the topics has a strong positive
trend, (v) vertex size proportional to betweenness centrality, (vi) top 5% vertices regarding betweenness centrality (see subsection “Topic network
and topic communities” under the “Results” section) marked in grey
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“Background” section, show some in a different light,
identify new trends, and point out blind spots. For ex-
ample, for electricity generation, the discourse clearly fo-
cuses on photovoltaic and wind energy, whereas highly
cited reviews dedicated to sustainable energy still discuss
conventional options [32–35]. Further, this study can
confirm the dominance of batteries for electrifying the
transportation sector [35, 40, 63, 68]. Interestingly, re-
garding fuel cells, the discourse tends to associate them
with biofuels rather than hydrogen, which indicates that
a comparably low realization potential is ascribed to the
vision of a hydrogen economy [33, 57–62]. This study
further detects the silent rise of research on mechanical
energy harvesting as a potentially relevant new trend.
Regarding blind spots, this study validates the concerns
that have been anticipated already, e.g., regarding the
availability of material resources for energy transitions
[81, 149–151], and points out a lack of attention to the
role and structure of different end-use sectors. Beyond
dealing with these thematically specific trends, this study
can, with its holistic approach, show that the discourse
is moving away from the multi-faceted concept of sus-
tainability to a more narrow technological perspective.
It should be noted again that the topic model serves

for identifying average trends regarding the increase or
decrease of attention to specific topics. Thus, if certain
themes seem to be missing in the academic landscape, it
can only be concluded that the majority of articles do
not refer to these themes, but not that none refers to
them.
Considering the hybrid nature of the field involving

energy research and sustainability science, the discussion
addresses these two fields separately. The first part of
the discussion is organized along key energy system
stages: conversion, storage and distribution, markets,
and end-use sectors [152–154]. The second part pro-
vides reflections from an overarching sustainability per-
spective. Acknowledging the various conceptualizations
of sustainability [13, 14, 155–159], this study focuses on
selected elements: justice between generations, societal
sub-systems, levels or scales, and the operational princi-
ples of strong sustainability.

Energy system
If the trends identified via topic modeling became reality,
the future energy system would be highly electrified using
photovoltaic and wind energy but would also intensively
make use of bioenergy (compare: cluster 4 in Fig. 4; com-
munity C in Fig. 5; hot topics in Table 1). This observation
is largely in line with the trends in the literature highlighted
in the “Background” section [30–35]. The research field
seems to be distancing itself from technologies with high
damage potential in the case of failure. For instance,
expanding deep geothermal energy might be connected to

high risks [33, 34, 37]. This might explain why geothermal
energy only receives an accompanying role here (only
present in community C in Fig. 5 but not in Fig. 4 using a
threshold regarding the strength of trends). Furthermore,
topics on nuclear energy or fossil power plants, e.g., in
combination with CCSU, which are part of several reviews
addressed in the “Background” section [32–35], did not
emerge from this study as prominent topics (compare: cold
topics 225, 10 in Table 3). Instead, the results of this study
suggest that the focus lies on improving technologies with
potentially lower direct risks. The discourse seems to per-
ceive the basic renewable energy conversion as a mastered
task and now traverses on the learning curve to a phase
focusing on optimization (compare: topic 90 in Table 1,
community C in Fig. 5). This involves more detailed
technological development and physico-chemical advance-
ment of materials and processes. This study indicates that,
in the near future, improvements might be expected, in
particular, for biotechnology and photovoltaics (compare:
community A and community B in Fig. 5).
While advancing conversion technologies with low

direct risks, long-term or latent risks connected to the
upstream or downstream energy system stages might re-
quire greater attention and accompanying strategies.
Due to the urgency to decarbonize the energy system
and the renewable energy potential, the recent focus on
advancing energy conversion is justifiable. However, the
material basis for renewable power generation units
seems to be taken for granted and potential social or en-
vironmental conflicts arising from their construction
and operation have not been prominent topics. This
study shows that current research already deals with ad-
vancing material properties in the production phase and,
to a certain extent, considers life cycle assessment in
connection with biomass from microalgae and building
materials (compare: community A and community C in
Fig. 5). However, research does not seem to apply a
comprehensive life cycle perspective for discovering
latent risks. Furthermore, the topic model does not iden-
tify direct attention to the supply and recycling of mate-
rials, especially metals, for energy systems. Several
studies, including a few of the reviews screened for the
“Background” section, underline the relevance of these
issues [81, 149–151]. However, the results of this study
indicate that these topics generally receive low attention.
Future research on energy systems might be broadened
and based on a more integrated energy and materials
perspective.
In parallel to research on energy conversion, intensive

research on energy storage and non-fossil fuels contrib-
utes to establishing renewable energy systems. The re-
search on battery or supercapacitor technologies advances
crucial elements of future electric grids, which need to be
capable of integrating and balancing fluctuating renewable
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energy generation at large scale. The reviews screened for
the “Background” section [35, 38–40] as well the topic
model highlight the efforts made in these fields (compare:
hot topics 1, 109 in Table 1). Even more challenging might
be decarbonizing the transportation sector using small
storage units and alternative fuels. Concerning the as-
sumption that batteries might precede fuel cells in the
near future [35, 39], the results of this study point in the
same direction (compare: rank of hot topics 57 and 13 in
Table 1). However, they also indicate significant progress
in fuel cell technology. The hot topics identified here sug-
gest that the fuel converted in these cells will probably not
be hydrogen from electrolysis but biofuels (compare: hot
topics in Table 1, community A in Fig. 5). This assump-
tion results from the observation that topics addressing
a large-scale hydrogen infrastructure, which is a major
bottleneck for establishing a hydrogen economy, do not
emerge as prominent topics. Instead, the topic model
reveals a strong focus on bioenergy. Although the avail-
ability of sustainable biomass is limited [160], the progress
of biotechnology for different feedstocks identified here
could boost the biofuels pathway. In line with other studies
[161], this indicates that it is unclear whether the transpor-
tation sector will follow the bioenergy or battery pathway,
or which type of mix thereof. This emphasizes that scenar-
ios and decision-making on the future of transportation are
very sensitive and need to take into account the uncertainty
regarding the learning curves of various technologies.
In the context of complex renewable energy systems,

digital technologies and artificial intelligence for optimiz-
ing performance are already incorporated as future-
oriented solutions and will require continued attention.
The main application of digital technologies identified
here is the optimization of renewable energy systems
(compare: hot topic 255 and community C in Fig. 5). In
this field, digitalization is expected to have a net positive
effect regarding climate change mitigation [162] and
promises further improvements for planning, operating,
and managing energy systems including the various end-
use sectors [162–170]. However, potential negative effects
need to be taken into account such as rebound effects,
e.g., in the transportation sector [167, 171], or socio-
economic concerns regarding the replacement of human
labor by machines [167]. With the increasing digitalization
of the energy system, accompanying strategies that sup-
port the beneficial effects and decrease the adverse effects
will be crucial [162, 167, 172].
While being concerned with technological progress,

the academic field seems to perceive the task of estab-
lishing energy markets as an operational or political one.
A possible interpretation of the prominence of optimization
methods (compare: hot topics 90, 255 in Table 1, commu-
nity C in Fig. 5) and the emergence of business environ-
ments as a bridging topic (compare: topic with high

betweenness centrality at the bottom of community D in
Fig. 5) is that the research field takes for granted that energy
markets are functioning reliably. Efforts for optimizing
business operations would probably be less evident if the
reliability of markets would be questioned fundamentally.
Also, the observation that topics on electricity markets and
regulation receive declining attention strengthens this
assumption (compare: cold topics 49, 221 in Table 3). A
possible interpretation is that, in the context of increasing
liberalization [173], science tends to see the responsibility
of establishing markets with politics [35]. However, estab-
lishing decentralized renewable energy markets that fit the
different regional requirements is challenging [173, 174].
Therefore, strengthening cooperative research between sci-
ence and politics might be reasonable [174]. Such research
efforts might examine, in particular, the social, economic,
and political struggles of implementation for facilitating the
establishment of sustainable markets. Further, in the con-
text of increasing decentralization, the declining attention
to international trade, e.g., in global energy markets, ap-
pears logical (compare: cold topics 104, 185 in Table 3).
However, considering the uneven global distribution of ma-
terial resources and possible political or economic tensions,
the international resource markets might become a decisive
factor for developing the future energy infrastructure and,
as this and other studies highlight, require increased atten-
tion [175, 176].
Regarding the end-use stage, research focuses on energy

end-use by residents in urban areas (cluster 1, 4 in Fig. 4;
community B and community C in Fig. 5; abundant topics
in Table 2). Green buildings and electric vehicles are
addressed as two key end-use sectors associated with the
technical urban environment of individual consumers. An-
other very prominent topic is concerned with harvesting
mechanical or motion energy (hot topic 111 in Table 1).
The latter is identified here as a growing research field that
does, however, not appear prominently in review articles on
sustainable energy yet such as the ones referred to in the
“Background” section [30–35]. The above topics indicate
that research on sustainable energy pays increasing atten-
tion to urban living environments and, thus, is connecting
to the level of individual consumers. A part of the research
is also concerned with raising consumer awareness via
product labeling (compare: bottom of cluster 1 in Fig. 4 or
bottom of community D in Fig. 5). However, in sum,
technological research seems to prevail. For instance, as dis-
cussed above, efforts for increasing sustainability in the
transportation sector are primarily seen in improving fuel
technologies. This and other studies show that systemic or
behavioral energy-saving potentials that do not primarily
stem from advancing individual technologies have received
comparably low attention, e.g., traffic planning, improving
public transport systems, or increasing vehicle occu-
pancy [34, 97, 161] (compare: no corresponding links

Bickel Energy, Sustainability and Society            (2019) 9:49 Page 16 of 23



in community D in Fig. 5). This seems surprising con-
sidering the high relevance of urbanization identified
(compare: abundant topic 100 in Table 2). A possible
interpretation is that research has not yet sufficiently
understood the complex modern urban systems and
transportation systems for establishing a consolidated
research structure. More research will be needed for
unraveling this complexity and understanding the in-
teractions between these fields.
The majority of energy-intensive industries receive com-

parably low attention, except the cement industry and, to
a certain extent, the manufacturing industry (compare:
hot topic 125 in Table 1, community D in Fig. 5). Several
energy-intensive industrial branches that have significant
carbon dioxide emission reduction potentials, especially
the steel sector [177, 178], are not among the prominent
topics. Only non-metallic building materials, especially
concrete, receive high attention. Although a similar poten-
tial exists in the steel industry [178], a reason for the ce-
ment industry standing out might be its potentials at the
material level. The cement industry offers comparably
high potential for reducing carbon dioxide emissions, e.g.,
by using replacement materials [178–180]. Due to the ten-
dency of the discourse towards materials science, poten-
tials connected thereto might receive higher attention
than process technology options. This might be an indica-
tion that, to a certain degree, research distances itself
from the traditional industry. Only one of the topics in
Fig. 4 (compare: top of cluster 2) directly refers to another
industrial branch, i.e., the manufacturing industry, but is
rather connected to the micro-level of energy-efficient
machines than to a meso- or macro-perspective as ap-
plied, e.g., in the field of industrial ecology [181, 182] or
circular economy [183, 184]. Also, only a few reviews pre-
sented in the “Background” section deal with industry as
part of the energy system [33, 63]. Further, the ones that
do so only apply a technological perspective regarding
decarbonization opportunities. These observations
emphasize that future research will have to understand
better the different industrial sectors and their interactions
with the energy system for leveraging decarbonization po-
tentials and for supporting the industrial transition to-
wards sustainability. In this context, research should not
only focus on the production phase in value chains. This
proposal is in line with other studies calling for a more in-
tegrated perspective on sustainable product-service sys-
tems that consider the interplay of consumers, i.e., the
users of energy-consuming products, with the phases of
product design, manufacturing, and recycling [185].

Sustainability
This study indicates that research on sustainable energy
is navigating towards a technology-oriented perspective
(compare: hot topics in Table 1) and is moving away

from the normative concepts connected to sustainability
and sustainable development that have initially moti-
vated this research field (compare: cold topics in Table
3). This becomes apparent when examining the various
cold topics related to sustainable development. An alter-
native interpretation would be that the normative con-
cepts have been integrated to an extent that makes the
need for explicitly referencing conceptual ideas obsolete.
However, based on the following discussion, this study
tends to conclude that conceptual ideas of sustainability
actually have decreasing influence.
Research on sustainable energy is clearly concerned with

inter-generational justice, whereas the attention to intra-
generational justice seems less apparent. The strong focus
on renewable energies represents efforts to ensure the
availability of energy while limiting the negative effects of
climate change. These efforts do not guarantee to secure a
livelihood for future generations but have the potential to
contribute to it. However, as shown in the previous sec-
tion, the attention to depletable material resources is low.
The physical availability of raw materials might not be the
major bottleneck in the near future for establishing a low-
carbon economy, whereas environmental, social, and eco-
nomic issues of resource extraction seem to be more rele-
vant [150]. Therefore, the latter might deserve greater
attention. Turning to intra-generational justice, there are
no prominent topics addressing, e.g., energy poverty or
land-use conflicts. This indicates that issues of intra-
generational justice might be underrepresented. For not
leaving anybody behind, research on, e.g., the relationship
between developed and developing countries might be
strengthened.
Regarding the systemic perspective adopted, research

seems to follow a socio-technical system perspective, which
might benefit from increased attention to the environmen-
tal system (compare: communities A, B, C vs. D in Fig. 5;
cold topics in Table 3). This study identifies a focus on in-
frastructural and technological systems (compare: hot
topics in Table 1). However, topic community D also refers
to several societal sub-systems, especially the economic, the
social, and the government system. The consideration of
operational aspects of transition processes involving these
systems indicates an action-oriented research agenda,
which matches the scholarly tradition of transition manage-
ment for socio-technical systems (STS) [186, 187]. This
match is more obvious than it would be for, e.g., the re-
search tradition on social-ecological systems (SES) [1, 157].
While in research on SES and STS parts of the societal sub-
systems considered are similar, research on SES ascribes a
stronger role to the ecological system. In the discourse in-
vestigated here, the environment system is considered by
several topics addressing assessment of environmental foot-
prints (compare, e.g., topic 276 in Table 2). However, apart
from referring to such aggregated indicators, explicit
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considerations on specific elements of the natural system
appear to be missing among the major topics. Independent
of which research tradition will prevail in future research, it
is vital to strengthen the focus on interactions of modern
energy systems with nature for not overseeing potential
harmful effects.
Although a social science perspective is clearly present

in research on sustainable energy (compare: cluster 1 in
Fig. 4 and community D in Fig. 5), it could experience a
higher degree of integration with the strongly growing
technological perspectives. A key indication for this can
be derived by studying the four most distant thematic
fields (Fig. 4) and the communities in the topic network
(Fig. 5) in parallel. Technology-related topics from the
thematic fields mix up across the topic communities.
Hence, an achievement of research on sustainable energy
is that research has become interdisciplinary in terms of
technology. However, the majority of topics of the theme
about low carbon transitions and decision-making
mainly end up in one single topic community. This com-
munity incorporates aspects related to the social sciences.
Since it shows weak interconnections with technological
themes, there seems to be potential for improving the
interdisciplinary collaboration between technological re-
search and the social sciences. Other studies have already
found that there is a lack of social science perspectives in
the general field of energy research [188–190]. This study
shows that in research on sustainable energy, the integra-
tion of the social sciences is higher but could still be
improved. A starting point might be the bridging topics
related to data science (compare: bottom right of commu-
nity C in Fig. 5). Data science is common to technical but
also social science domains. Connecting different domains
might happen based on connected data infrastructures ac-
companied by personal interdisciplinary exchange for
making sense of, e.g., prediction models.
Regarding the levels or scales considered, the global per-

spective seems to fade and might be reinforced (compare:
abundant topics in Table 2; cold topics in Table 3). Con-
sidering the increasing urbanization trend [191, 192], the
abundance of topics dealing with urban areas seems rea-
sonable for addressing critical sustainability problems that
affect a high share of the global population. Engaging with
the local level for providing insights into bottom-up devel-
opments and understanding the respective local dynamics
is of significant importance. However, at the same time,
successful approaches for sustainability also require an in-
tegrated global perspective and a top-down perspective
[6]. This kind of aggregated perspective is necessary for
avoiding isolated knowledge processes but instead inte-
grating the valuable insights from the local level. The glo-
bal perspective was key for supporting the normative
sustainability agenda that is increasingly integrated into
human society. In research on sustainable energy, this

kind of global perspective seems to fade and might be
reinforced by connecting the various available local per-
spectives in order to support solutions to sustainability
problems, e.g., via intergovernmental cooperation and
regulation.
Regarding the triad of operational principles of strong

sustainability, i.e., consistency, efficiency, and sufficiency, a
clear focus lies on the first two (compare: community C in
Fig. 5; abundant topics in Table 2). Consistency is clearly
addressed through research on renewable energy tech-
nologies using non-depletable energy resources. However,
as already mentioned above, more attention should be
paid to the availability, consumption, and recycling of de-
pletable material resources. Turning to the next principle,
efficiency receives high attention for optimizing power
systems and saving energy in the end-use sector. This
principle is connected to advanced technologies that save
costs while keeping the level of comfort. In contrast, the
presence of the principle of sufficiency, which favors fore-
going consumption instead of only optimizing it, is not as
clear, although the literature has highlighted it as a neces-
sary companion of efficiency [41, 42, 172, 193]. In sum-
mary, this indicates that research on sustainable energy
has not yet integrated all the principles in a balanced way
that are necessary for heading towards a steady-state-
economy that is not governed by a paradigm of growth
but of (sustainable) development [194].

Conclusions
This study provides a review of research on sustainable
energy based on an advanced latent Dirichlet allocation
topic modeling approach for detecting high-level pat-
terns. The main overarching pattern identified is that
the discourse is latently adopting a technology-oriented
paradigm and is moving away from the multi-faceted
concept of sustainability. The study highlights that the
research field on sustainable energy is focusing on find-
ing ways to establish and optimize renewable energy sys-
tems by reverting to materials science, (biological)
process engineering, and digital monitoring and control
systems. From a technological perspective, research on
sustainable energy seems to keep up with technological
progress and has the potential to contribute to climate
change mitigation. However, given the complexity of
renewable energy systems, no straightforward techno-
logical pathway could be identified. Therefore, this study
recommends improving horizontal integration of the
various valuable vertical research strands for preparing
scientific-technological knowledge in a way that enables
efficient and far-sighted decision-making. For establishing
sustainable energy systems, advancing research on sustain-
able energy will require not only targeting the core tech-
nical energy infrastructure, for which many solutions have
been proposed already, but strengthening the focus on
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issues that can be perceived from a holistic second-order
perspective. Therefore, this study further recommends to
re-strengthen a holistic ecological perspective on energy
systems considering the global scale, e.g., by considering
the complete material and environmental life cycle of the
energy infrastructure. Beyond considering the physical di-
mensions of energy systems, another key recommendation
of this study is to strengthen the existing links of the re-
search field to the social sciences. This will be crucial for a
balanced discourse completing the technology-orientated
agenda that research has increasingly been adopting in re-
cent decades. Extending the research scope in this way
would support an explicit consideration of all societal sub-
systems required for a sustainability transformation.
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