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Abstract: The food system plays a crucial role in mitigating climate change. Even if fossil fuel
emissions are halted immediately, current trends in global food systems may prevent the achieving
of the Paris Agreement’s climate targets. The high degree of variability and uncertainty involved in
calculating diet-related greenhouse gas emissions limits the ability to evaluate reduction potentials to
remain below a global warming of 1.5 or 2 degrees. This study assessed Western European dietary
patterns while accounting for uncertainty and variability. An extensive literature review provided
value ranges for climate impacts of animal-based foods to conduct an uncertainty analysis via
Monte Carlo simulation. The resulting carbon footprints were assessed against food system-specific
greenhouse gas emission thresholds. The range and absolute value of a diet carbon footprint become
larger the higher the amount of products with highly varying emission values in the diet. All dietary
pattern carbon footprints overshoot the 1.5 degrees threshold. The vegan, vegetarian, and diet with
low animal-based food intake were predominantly below the 2 degrees threshold. Omnivorous
diets with more animal-based product content trespassed them. Reducing animal-based foods is
a powerful strategy to decrease emissions. However, further mitigation strategies are required to
achieve climate goals.

Keywords: sustainable diet; carbon footprint; Western Europe; animal-based products; life cycle
assessment; climate targets; Monte Carlo simulation

1. Introduction

The objective of the Paris Agreement to restrict the global temperature increase to 1.5 or
2 degrees above pre-industrial levels demands a fast reduction of greenhouse gas emissions
(GHGEs) [1]. Although reducing emissions from fossil fuels is essential to achieving this
goal, a recent study shows that even if fossil fuel emissions are halted immediately, current
trends in global food systems may prevent the achievement of global climate goals [2].
While the food system already contributes to emissions substantially, by 2050, absolute
agriculture-related GHGEs are projected to more than double due to population rise and
dietary shifts [3]. Scientific consensus exists that dietary changes can offer substantial
reduction potentials [4–6]. Likewise, the EU’s Farm to Fork Strategy explicitly includes
the promotion of sustainable diets, in addition to the objective of promoting sustainable
practices in production and food processing [7]. The more a diet is based on plant-based
rather than animal-based products, the lower that diet’s carbon footprint (CF) [8,9]. When
comparing protein sources, all plant-based foods were found to underscore GHGEs of
animal-based products [6]. Clear tendencies can be observed: Vegan diets display the
lowest CFs, followed by vegetarian and pescetarian diets while increasing the proportion
of meat in a diet results in higher CFs [10–21]. Shifting to (mainly) plant-based diets can
lead to CF reductions of up to 60% [4,22].
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The high degree of variability and uncertainty involved in different levels of calculating
diet-related GHGEs limits the evaluation of reduction potentials. In life cycle assessments
(LCAs), which often supply food item GHGE values feeding into diet CF calculation,
variations arise, for instance, within data collection, aggregation, and processing [4,22,23].
Studies identified large ranges for GHGEs of animal-based foods (cf. [24,25]), indicating
high variability and uncertainty. Variations in GHGEs calculated for animal-based foods
appear to be much larger than those for plant-based commodities [24,25]. Also, food
quantity data, feeding into diet CF calculation, can substantially influence outcomes [4].
Despite the uncertainty associated with CF results, upscaled and uncertain projections
rely mainly on these results, which “is a bit like flying to Mars before having invented
the wheel” as Finkbeiner et al. ([26], p. 92) state. Investigations that feed probability
distributions for GHGEs of animal-based products into the calculation are required to
quantify uncertainty and variability in diet CFs. Uncertainty assessment methods (prob-
abilistic simulation [27], Bayesian statistics, fuzzy methods, non-parametric and robust
statistics, neural networks [28], pedigree matrix [29], and Gaussian error propagation [30])
allow the quantification of the climate impact of dietary habits and the corresponding
potential of reduction strategies. To enhance the reliability of results, diet CFs should be
indicated and discussed with uncertainty outcomes rather than displaying them as discrete
values [5]. One way of doing so is to create probabilistic simulations for diet CFs by feeding
the probability distributions of parameters into the calculation [27]. Creating intervals of
input values helps to overcome the limitations of (seemingly) exact values and aids in
accommodating complex natural systems [31].

Many studies ignore uncertainty in their calculation processes, which can lead to
error-prone results that do not reflect the spectrum of possible outcomes. Few studies
display uncertainties in their results [15,17,32–34]; only one study has fed probabilistic
distributions of food item GHGE ranges into their calculation [16]. There are studies
benchmarking emissions of the food system to climate goals [2,35–37]. However, they only
regarded average diets, they did not downscale climate targets to thresholds available
for the food system or they did not regard both 1.5 and 2 degrees global warming limit.
The question remains how to achieve these concrete, tangible, political goals when the
impact of a sector, in this case, the food sector, is so uncertain? The same applies to
GHGE mitigation strategies. Decision-makers can only develop impactful measures to
achieve these goals when they have robust, consistent, transparent, and comprehensible
information. Also, robust suggestions for adapted individual consumption patterns are
only possible if more than one diet is quantitatively evaluated. While studies on evaluating
individual consumption patterns against different climate goals are available for other
sectors [38,39], they are lacking for the food sector.

Therefore, this study quantified the climate impact of diets with uncertainty as well
as evaluated the gaps between them and global warming targets. The outcomes help
to understand a dietary pattern’s climate impact and thus derive mitigation strategies
to stay below global warming thresholds. Western dietary patterns, in particular, are
characterised by comparatively high GHGEs and are important to target for emission
reductions in the Global North [10,12–15,18]. This is why the study at hand focuses
on Western European dietary patterns (Austria, Belgium, Luxemburg, France, Germany,
Liechtenstein, Monaco, the Netherlands, and Switzerland [40]). Dietary shifts to more
plant-based diets are regarded as adequate climate change mitigation measures for the
Global North without endangering food security [41,42].

This study assesses the climate impact of Western European dietary patterns against
global warming thresholds while accounting for uncertainty and variability in GHGEs of
animal-based products. It identifies probabilistic distributions for CFs of Western Euro-
pean dietary patterns, namely three omnivorous types, differentiated according to meat
consumption frequency, as well as a vegetarian and vegan dietary pattern. To serve decision-
making targeted at GHGE reductions, the aim of this study is (I) to identify probabilistic
ranges of annual diet CFs for Western Europe considering GHGE probability distributions
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for animal-based food categories, and (II) to compare the GHGE of diets to food system
specific 1.5 and 2 degrees GHGE-thresholds per capita until the end of the 21st century. The
outcomes serve as guidance toward GHGE mitigation measures. Based on this, innovative
and effective policy recommendations can contribute to a more sustainable food system.

2. Background: Uncertainty and Variability

Both LCA and subsequent diet CF calculation can never fully and accurately represent
the entire complexity of reality as they are based on models that depend on data inputs,
methodologic choices [43], and simplifications [24]. Input data are already subject to
uncertainty and variability, but modelling processes comprise uncertainty as well [25].
Uncertainty exists when the information about the correct value is lacking, e.g., if data or
processes to determine a parameter are incorrect or missing [25,28]. Variability relates to
the immanent heterogeneity of data [25,28].

Uncertainty and variability arise from three sources, respectively [23]: Parameter
uncertainty is caused by empirical errors such as inaccurate measurements, leading to
unrepresentative or outdated data or lack of measurements. Model uncertainty relates
to information loss due to modelling choices like aggregation, e.g., when it comes to
spatial or temporal features. It also arises because of simplification, inter alia induced by
choosing a linear model for non-linear relationships [23]. Uncertainty due to choices or
scenario uncertainty [44] emerges inter alia in relation to the selection of system boundaries,
functional units, and allocation for the LCA at hand [23]. Spatial and temporal variability
arise since chemical and physical processes vary across different localities and times and
can never be fully known. Aggregation of spatially and temporally variable data can
therefore create further model uncertainty [23]. In addition, there is variability between
sources and objects. This refers to the inherent variation of input and emission sources
evaluated in LCAs [23]. There can be variability due to uncontrollable reasons such as
soil, weather, and plant health conditions [25]. Also, varying production systems lead to
different GHGE quantities [22]. Compared to intensive systems, extensive beef production
may quadruple GHGEs, for example. Packaging, storage type, and the extent to which a
product has been processed also alter the GHGE inventory [45]. Frozen vegetables cause
three times more emissions than unfrozen equivalents [22].

Despite standardisation and other measures possibly limiting the impact of uncertainty
and variability, uncertainty can never be entirely reduced. So, when precise advice results
from outcomes disregarding uncertainty a misleading feeling of certainty is caused [46].
Thus, rather than displaying results in the form of single, absolute numbers, diet CFs
should be indicated and discussed with uncertainty outcomes to assess their reliability and
enhance information on diet CFs [5]. Such procedures increase the outcome’s likelihood of
containing the true value.

The majority of existing diet CF studies, however, calculated footprints determinis-
tically and presented results as point values (cf. [13,19,47–52]). Only a few accounted for
uncertainty or variability, some of which used top-down or hybrid approaches (cf. [53,54]).
In LCA-based studies, some indicated results displaying standard deviations of diet CFs
based on LCA data [32], or food consumption habits surveyed [15,17,33,34]. One study
used uncertainty analysis via a pedigree matrix to retrieve probabilistic distributions for
food item GHGEs but still indicated diet CFs as precise values [29]. Another investigation
incorporated the variability of food item LCAs in diet CFs via probabilistic Monte Carlo
(MC) simulation [16]. They allocated probability distributions to food item GHGE ranges,
which they had compiled from the literature and databases. After conducting the MC
simulation and interlinking data with surveyed French food consumption amounts, they
retrieved a probability distribution for the French diet CF. However, in their study, the
effects causing the variation cannot be traced to dietary patterns as they used unaggregated
individual dietary consumption data. So, it cannot be determined if a high diet CF resulted,
e.g., from eating large quantities of food, or from consuming food items with high carbon
intensities. Therefore, our study quantitatively accounted for LCA-related uncertainty and
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variability in diet CF results, while distinguishing dietary patterns to create a meaningful
CF analysis and enable the development of mitigation strategies.

3. Material and Methods

The procedures applied were derived from decision analysis approaches [31,44,55,56]
and combined with the adjusted procedures of Vieux et al. [16]. A literature review for
animal-based product GHGEs was conducted to create value ranges. Probability distri-
butions were created from these ranges, feeding into diet CF calculation. An uncertainty
analysis via MC simulation generated probability distributions for diet CFs. Finally, bench-
marking to the 1.5 and 2 degrees global warming emission thresholds was conducted.

3.1. Data Preparation and Processing

The calculation of dietary pattern CFs was based on the SUSLA calculator. It was de-
veloped within the research project “The Sustainable Lifestyles Accelerator (SLA)” funded
by the KR Foundation and can be found under https://susla.app/ (accessed on 23 February
2021). The annual food balance sheets of the Food and Agriculture Organisation of the
United Nations (FAO) for Western Europe [57] provided food quantity data. They provide
food amounts supplied to a region in a year. Domestic food production is combined with
imported goods and altered according to stock changes and the share of food available
for human diets [57]. The food balance sheet data was adjusted to match per capita con-
sumption of different dietary patterns: A vegan diet (no animal-based products at all),
a vegetarian diet (including eggs and dairy, but no meat and fish) as well as three diets
differing in meat consumption frequencies (O_low: 1–2; O_medium: 3–4; O_high: 7 meat
portions per week; for more details see Appendix A). The FAO food supply data does
not indicate data for beverages such as soft drinks, fruit juices, plant-based milk, and
bottled water. Therefore, for all drinks but milk, Swiss and German SUSLA user data [58]
was used to estimate the average amount consumed per dietary pattern to ensure data
coherence. In total, 1000 Swiss and German data sets from January 2020 until March 2021
were available: 81 for Vegan, 250 for Vegetarian, 421 for O_low, 191 for O_medium, and 57
for O_high. Even though SUSLA user data is not representative, this approach is regarded
as a suitable compromise since it includes beverages, in contrast to some diet CF studies
that either disregard drinks [16,18], or exclude certain beverages [12]. Table 1 displays the
consumption amounts of O_medium (corresponding to the average Western European
diet) and the percentual deviations of the other diet types from these amounts. In general,
the more plant-based a diet, the higher the amounts of beans, nuts/seeds, rice, potatoes,
cereals, vegetables, fruits, and milk alternatives. The opposite was the case for wine, beer,
coffee, and juice, as well as oils/fats.

GHGEs for plant-based products were taken from Teubler & Bienge [59], while prob-
ability distributions derived from an extensive literature review (see below) provided
GHGEs for animal-based products. The GHGE values were aggregated to match the
categories of the food quantity data.

Table 1. Food quantities in O_medium and percentual differences of other dietary patterns.

Food Item

Difference
Vegan

to
O_medium *

Difference
Vegetarian

to
O_medium *

Difference
O_low

to
O_medium *

Amount
O_medium

kg cap−1 a−1

Difference
O_high

to
O_medium *

Beans +124% +58% +33% 1.9 −11%
Beef −100% −100% −90% 17.8 +75%
Beer −56% −42% −38% 74.3 +40%

Bottled water −56% −61% −31% 163.8 −4%
Cereals +42% +20% +16% 110.7 −11%
Cheese −100% −16% +3% 33.5 −11%
Coffee −31% −26% −11% 134.7 +2%

https://susla.app/
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Table 1. Cont.

Food Item

Difference
Vegan

to
O_medium *

Difference
Vegetarian

to
O_medium *

Difference
O_low

to
O_medium *

Amount
O_medium

kg cap−1 a−1

Difference
O_high

to
O_medium *

Eggs −100% −45% −23% 12.7 −11%
Fish/seafood −100% −100% −88% 21.5 +75%

Fruits +78% +22% +18% 107.7 −11%
Juice −37% −12% −5% 36.8 +45%
Milk −100% −33% −13% 52.8 +78%

Nuts/seeds +110% +49% +28% 9.7 −11%
Oils/fats −11% −3% +1% 24.6 −11%

Other alcohol +7% −7% −1% 12.0 +6%
Other dairy −100% −31% −12% 11.1 −11%
Other foods −54% −14% −7% 45.6 −11%
Other red

meat −100% −100% −100% 50.5 +75%

Potatoes +10% +5% +4% 62.4 −11%
Poultry −100% −100% −76% 19.7 +75%

Rice +42% +20% +16% 4.1 −11%
Soft drinks −45% −46% −53% 49.0 +12%

Milk
alternatives +290% +188% +100% 16.8 −69%

Tea +5% +4% −25% 119.5 −15%
Vegetables +48% +11% +9% 99.2 −11%

Wine −47% −43% −25% 44.8 +35%
* Calculation based on Orlich et al. [60] and SUSLA [58]. O_medium represents an omnivorous (3–4 meat portions
per week) diet. Other dietary patterns are Vegan = vegan diet, Vegetarian = vegetarian diet, O_low = omnivorous
(1–2 meat portions per week) diet, and O_high = omnivorous (7 meat portions per week).

3.2. Determining Ranges for High-Impact Food Category GHGEs

As animal-based products have a high impact on the diet CF [4,13,16,20,48], LCA
ranges were compiled for the categories beef, pork (representing other red meat), poultry,
fish/seafood, eggs, cheese, milk, and other dairy products. Since GHGEs for plant-based
products are comparatively low and less uncertain [61], they fed into the model as point
values. A systematic literature review based on [62] was carried out to obtain multiple
GHGE values per animal-based product category from LCA studies and reviews. Preferably,
they were supposed to cover different production systems and differing food products
within food categories to account for product diversity.

For the review, the online scientific literature databases Web of Science and ScienceDi-
rect were used. The search inquiry was run in February 2021 and combined keywords
regarding climate impact, food items, and the regional scope ((food* OR “animal-based
product” OR “bovine meat” OR “ruminant meat” OR beef OR pork OR pig OR poultry OR
chicken OR broiler OR egg OR dairy OR milk OR butter OR cheese OR fish OR seafood)
AND (“GHG emission” OR “Life Cycle Assessment” OR LCA OR GHG* OR “greenhouse
gas*” OR “climate impact” OR “carbon footprint” OR “greenhouse gas emission*”) AND
(Austria* OR German* OR France OR French OR Monaco OR Netherlands OR Dutch
OR Switzerland OR Swiss OR Belgium OR Belgian OR Luxemburg OR Liechtenstein OR
Europe* OR “Western Europe”). Since the conversion factor for methane to carbon dioxide
equivalents (CO2e) was updated in 2013, the review was limited to papers published from
2013 onwards. The search yielded 2718 results after removing duplicates. After filtering
titles for relevance, the abstracts were scanned so that 78 articles were included for further
revision. Checking these articles for relevant sources which they refer to identified a further
43 papers adding up to 121 papers available for final review.

The aim was to obtain GHGE data for which the underlying LCA methodology is as sim-
ilar as possible since different method choices can have large effects on GHGE outcomes [63].
Articles retrieved then were filtered regarding adherence to the following criteria:
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1. Spatial reference: Western Europe (based on selected countries). Since the diet CF is
calculated for Western Europe, only LCA studies for Western European countries or
regions were included.

2. LCA type: Attributional. To ensure comparability, LCAs following a consequen-
tial approach were excluded from the review. Many studies did not indicate ex-
plicitly that they apply an attributional approach but were assumed to do so for
pragmatic reasons.

3. System boundaries: Cradle-to-farmgate. The scope was chosen because most food
products’ GHGEs arise up to the farmgate [64]. Even though ideally, emissions from
the entire life cycle should be regarded, data availability is limited for LCAs extending
beyond the farmgate [65]. For cheese and other dairy products, dairy processing is
also included in the GHGE values.

4. Emissions from land-use change and soil carbon sequestration: Not included. As
most studies did not include emissions from land use change and soil carbon seques-
tration, only GHGE values that exclude these sources and sinks were incorporated to
ensure comparability. When there was no clear indication, it was assumed that they
disregarded these factors.

5. Functional unit: kgCO2e kg−1. Only studies indicating emissions per weight unit
were chosen as this is the most widely used functional unit. If necessary, values were
converted to kgCO2e kg−1. For meat and fish, units were adjusted to emissions per
bone- and skin-free meat when carbon intensities were given per live- or carcass-
weight (see Clune et al. [66] for conversion factors).

Applying these criteria, 11 studies were identified for compiling food category GHGE
ranges. The main exclusion criterion was the conversion factors since many studies pub-
lished after 2013 still used the old factor. Two studies [47,67] updated the food GHGEs
from studies that had used the old factor. To include their converted values and cover
a larger variety of production systems and food types, the review’s spatial scope was
extended from Western European to all European countries. For those studies for which
the conversion factor was updated, the limitation to only include studies from 2013 was
removed. This process added 19 studies, which led to a total of 30 studies [47,68–96] (see
Table S1, supplementary material). The smallest (largest) LCA value was assumed to be
the lower (upper) bound of the GHGE range’s 90% confidence interval. Additionally, the
median was calculated to fit the probability distribution assigned to this range.

3.3. Creation of High-Impact Food Category Probability Distributions and Benchmarking to Global
Warming Targets

For model implementation, an uncertainty analysis via MC simulation was conducted,
combining approaches from Vieux et al. [16] and decision analyses [31,46,55,56]. MC
simulation has been frequently applied to quantify uncertainty in environmental contexts
and complex natural systems [27,31]. From the literature review, a range of food item
GHGE values were included to create a probability distribution and display the uncertainty
and variability of inputs in the calculation. Therefore, the procedure increases the outcome’s
likelihood of containing the true value.

MC simulations repeatedly select a random value from a given probability distri-
bution to calculate as many output values as values that were retrieved [30]. This study
allocated log-normal distributions to all ranges identified, simultaneous to the study of
Vieux et al. [16], and ran the model 10,000 times. A generic formula was created in which
food consumption data were multiplied by the food categories’ GHGE values and then
summated to retrieve the diet CF. GHGEs for plant-based food items, MC simulation results
for animal-based foods’ GHGEs and diet-specific consumption amounts fed into the generic
formula to calculate the diet CF distribution for each dietary pattern (Vegan, Vegetarian,
O_low, O_medium, and O_high). The CFs for all dietary patterns except the vegan sce-
nario were displayed as probability distributions and thus gave the likelihood of different
outcomes. The vegan diet CF was given deterministically since animal-based product con-
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sumption was zero. The uncertainty analysis was realised by applying the decisionSupport
package [97], implemented in the R programming language and environment [98,99]. For
visualisation, R package ggplot2 [100] was used.

The diet CFs were benchmarked to the average global per capita CO2e-thresholds for
reaching the 1.5 and 2 degrees global warming targetsuntil the end of the century. Based on
Clark et al. [2], the GHGE amount available for non-food emissions from 2020 to 2100 was
subtracted from the total available GHGE thresholds for this timeframe. They compiled
the thresholds assuming to meet the 1.5 and 2 degrees global warming target by a 50% or
67% chance, respectively. Non-food emissions were supposed to meet net-zero in the year
2050, which corresponds to EU targets [7]. This led to the 50% and 67% probability limits
for global GHGEs available for the food system for the years 2020 to 2100. Dividing these
thresholds by the average population projected from 2020 to 2100 [101] led to annual per
capita thresholds, used for benchmarking previous modelling results.

4. Results
4.1. Ranges for Animal-Based Food GHGEs and Modelled Dietary Pattern CFs

Figure 1 illustrates the animal-based food GHGE ranges feeding into the model.
Regarding the median, beef displayed the highest GHGE value which was three times
higher than the median for cheese, showing the second highest median for carbon intensities
in animal-based products. Their medians are followed by other red meat, fish/seafood,
other dairy, poultry, eggs, and milk. The largest range was found per unit of beef (n = 28).
Fish/seafood (n = 10) displayed the second-largest value span. Milk (n = 17), poultry
(n = 2), and eggs (n = 2) displayed the narrowest ranges, feeding into the model.
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The vegan diet (Vegan) had the lowest climate impact, amounting to 612 kgCO2e
(Figure 2). For dietary patterns with a probabilistic simulation, Vegetarian had the smallest
CF values and the narrowest 90% confidence interval (763 to 1282 kgCO2e), followed by
O_low (917 to 1580 kgCO2e) and O_medium (1812 to 3491 kgCO2e), while O_high (2378
to 5110 kgCO2e) showed the highest CF values and the widest spread distribution (see
Table A2 for details on the confidence intervals). The vegan diet was the diet with the
lowest, and the omnivorous diet with daily meat consumption was the diet with the highest,
climate impact. The confidence interval widths increased alongside the animal-based food
content from Vegetarian to O_high. O_low and Vegetarian CF distributions were much
narrower than O_medium and O_high because the highly varying ranges of meat products
and fish/seafood were only present in low or no amounts. So, the variation was attributable
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to dairy and eggs, which also displayed much smaller GHGE ranges compared to meat
and fish/seafood. O_low displayed a wider probability distribution than Vegetarian due to
larger uncertainty feeding into the calculation. This was because of higher animal-based
product content in the diet in general and the prevalence of meat products and fish/seafood,
which were not present in the vegetarian diet at all. Both weight-contribution and the width
of the respective food GHGE distribution were crucial for the width and absolute amount
of final diet CF distributions. The range and the absolute values of a diet carbon footprint
distribution become larger the higher the amount of products (such as beef, fish/seafood,
cheese, and other dairy) with highly varying emission values in the diet.
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Figure 2. Probability density distributions (generated by 10,000 runs of a Monte Carlo simulation) for
carbon footprints of the five Western European dietary patterns. They are benchmarked to the average
global per capita CO2e-thresholds available for the food system for reaching the 1.5 and 2 degrees
global warming targets until 2100 based on Clark et al. [2]. CO2e = carbon dioxide equivalents.

4.2. Benchmarking Dietary Patterns to Global Warming Thresholds

Figure 2 also displays the per capita threshold for the food system to maintain global
warming below 1.5 degrees (2 degrees) until the end of the 21st century. The emissions
allocated to the food system amount to 169 kgCO2e (1339 kgCO2e) when the chance of not
exceeding the global warming threshold is set at 67% chance. The threshold increased to
434 kgCO2e (1870 kgCO2e) when the chance was reduced to 50%. All CFs exceeded the
50% chance 1.5 degrees global warming limit by at least 185 kgCO2e. O_high’s distribution
and most of O_medium (93%) surpass the 50%-chance 2 degrees threshold while Vegan
and Vegetarian as well as almost the entire O_low distribution (99%) were below the limit.
For the 67% chance 2 degrees threshold, the Vegan CF distribution remains lower than
the threshold as does most of Vegetarian (96%) and O_low (80%). The dietary patterns
containing more animal-based products all exceed the limit entirely. This means that the
average Western European diet (O_medium) and a high-meat diet (O_high) exceed the
2 degrees global warming thresholds. All current dietary patterns exceed the thresholds
available for the food system to limit global warming below 1.5 degrees.
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5. Discussion
5.1. Probabilistic Ranges of Modelled Dietary Pattern CFs

This study showed that the lower the animal-based, and the higher the plant-based,
food content of a diet, the lower the CF. This is in line with the literature findings [10–21].
The increase in diet CFs, going from plant-based (Vegan) to diets with high animal-based
product contents (e.g., O_high) arose from increased consumption of food categories with
comparatively high GHGEs.

Even though O_low still contains some meat and fish/seafood (Table 1), it yielded
substantial emission savings and displayed a similar CF to Vegetarian. Therefore, food
categories must not be excluded entirely to achieve substantial emission reductions, con-
firming conclusions in the literature [18,102]. However, the findings of our calculations
must be regarded cautiously since O_low displays very small amounts of meat consump-
tion, translating to only occasional consumption, e.g., approximately one small beef steak
per month.

Emissions from meat consumption arise directly from livestock farming, especially
methane and nitrous oxide from cattle breeding. Also feed requirements contribute to
high GHGEs. For one calorie of meat, multiple calories of feed have to be provided [9].
With few exceptions, plant-based products have lower GHGEs than those animal-based
products with the lowest GHGEs, e.g., milk and eggs. Plant-based products with rela-
tively high GHGEs are some vegetables grown in heated greenhouses, alcohol (which
has a high processing intensity), and rice, whose wet cultivation causes high methane
emissions [65,103]. Nevertheless, plant-based foods have comparatively low GHG intensi-
ties. Even if plant-based products with comparatively high GHGEs are consumed more in
diets when switching from O_high to Vegan, they do not outweigh the effect caused by
reducing animal-based foods.

Therefore, this study supports literature findings indicating that replacing animal-
based foods with plant-based products contributes to climate goals [4,10,16,104,105]. Con-
versely, this study rejects findings of increased CFs due to larger vegetable and fruit
quantities [16]. This is because the meat was substituted based on weight and not in an
isocaloric way.

The diet CF probability distributions’ shapes evolved due to the log-normal probability
distributions for animal-based product GHGE values that fed into the model. The literature
and the model (when medians are regarded) agree that per weight unit beef, cheese, and
other red meat cause the highest carbon emissions and that particularly beef displays by
far the highest GHGEs [4,13,16,20,48]. The outcomes of this study confirm findings [61] in
which beef displayed the largest GHGE range, followed by fish/seafood. Equivalent to
our study, they found much narrower ranges for cheese, pork (comparable to other red
meat), poultry, eggs, and other dairy. Additionally, another study [103] found particularly
highly varying carbon intensity ranges for ruminant meat as well as fish/seafood and
lower variations for other animal-based products. The reasons for the magnitude of GHGE
ranges in animal-based products are very difficult to trace since the effects may level out
or reinforce each other. Large ranges for both beef and fish/seafood GHGEs can emerge
from high variability of emissions due to different production systems and, in the case
of fish/seafood, distinct products included in these ranges. Aquaculture and trawling
fishery for instance emit more GHGEs than non-trawling fishery, while more extensive beef
production systems display far larger GHGEs than intensive systems or coupled dairy-beef
systems [103]. So, ranges become narrower when disaggregated into product categories
and/or production systems [61,103].

The increasing confidence interval widths from Vegetarian CF to O_high indicate that
the more animal-based products were prevalent in a diet, the larger the 90% confidence
interval (Figure 2). This is because only distributions for animal-based product GHGEs
were used in the calculation. If value ranges for plant-based GHGEs are also fed into the
model, the CF widths would increase for all diets. However, this effect would be much
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smaller compared to animal-based products since GHGE ranges for plant-based products
are in general far lower than for animal-based products [61].

Comparing our diet CF results directly to other studies is challenging as there is a wide
variety of possible methodological choices. Even if methods are similar, distinct data sources
as well as the inherent uncertainty and variability may lead to substantially different results
and, therefore, limited comparability [106]. For the average French diet, results are lower
(1522 kgCO2e cap−1 a−1 [16]) than our result for O_medium. Calculations for the average
diet in the European Union underscored our vegan diet (605 kgCO2e cap−1 a−1 [19]). The
outcomes in a study regarding diet CFs of average Dutch women were much lower than
our results for dietary patterns with higher meat consumption, while their vegan and
vegetarian diet CFs were more in line with the modelled diet CFs [107].

The differences between those studies and the study at hand can be mainly attributed
to three reasons: Firstly, the existing studies used outdated conversion factors for the global
warming potential of methane and nitrous oxide. This results in lower carbon intensities
for all product groups compared to the study at hand. In addition, this underestimation is
more pronounced for animal-based products (methane being the main contributor). This
is also why results increasingly diverge the more animal-based products were included
(see [107]). Secondly, excluding fertiliser production from emission inventories lowered
CFs [19]. Thirdly, CFs were lower because food consumption surveys were used for the
calculation [16,107], which generally underestimate food quantities compared to statistical
data [48]. In one case [16], individual variations in food consumption were translated to
the variation in the diet CFs. So, their study was hardly comparable to the study at hand
even though they calculated diet CFs with an MC simulation.

The distributions retrieved for the different dietary patterns were not supposed to
deliver exact values, but ranges that contain the true value with a high probability. There-
fore, when comparing these results to the literature, while considering the methodological
differences, we think that this study’s results are situated in a plausible range.

5.2. Benchmarking Dietary Patterns’ Adherence to Global Warming Thresholds

The benchmarking displays that a higher prevalence of animal-based products reduces
the likelihood of limiting global warming to 1.5 or 2 degrees. Our study is the first to show
that all dietary patterns exceed the goal for the 1.5 degrees global warming target, even
when quantifying uncertainty. This includes the vegan diet, which generated the lowest
GHGEs. Therefore, even when 100% of the population follows a vegan diet right now, the
food system’s emissions would still exceed the available threshold to limit climate change
to a temperature rise of 1.5 degrees. O_medium and O_high for the most part exceeded
both 2 degrees thresholds, while Vegan was below both limits. Vegetarian and O_low
mainly adhered to both the 67% and 50% chance limits. Even though vegan and vegetarian
diets could potentially offset high-emission diets, their current share in the population is
too low. For instance, in Germany, the share is 8% [108].

No further studies are known that benchmark dietary pattern CFs which regard dif-
ferent shares of animal-based products against both the 1.5 and 2 degrees global warming
target for the food system. Therefore, comparability remains limited. A study [37] bench-
marked global dietary recommendations (World Health Organization, USA, Australia,
Germany, China, and India) to total per capita emission thresholds available in 2050 for
reaching the 1.5 and 2 degrees global warming targets. All recommendations were below
the 2 degrees limit and all recommendations except the national Indian guideline, which
was low in meat quantities, exceeded the 1.5 degrees global warming threshold. Another
study [2] projected the global food system GHGEs under different emission reduction
scenarios and assessed their compatibility with total GHGEs available to remain below
the 1.5 and 2 degrees global warming targets. Their business-as-usual diet remained be-
low the 2 degrees threshold and trespassed the 1.5 degrees global warming target. A
mainly plant-based diet was able to cut emissions by half and thus did not trespass the
1.5 degrees emission limit. In contrast to our results, in both studies, dietary patterns with
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a much higher meat content than O_low are within the 2 degrees target (for comparison,
most national recommendations include a meat content that falls between O_low and
O_medium). However, both studies compare the emissions caused by the food system with
the total available emissions threshold. The food sector already consumes a large portion
of the budget, leaving little room for GHGEs arising from other sectors, such as mobility
and housing.

Willet et al. [35] downscaled a 2 degrees global warming limit to the food system
and assessed for a business-as-usual case and three other dietary patterns (pescetarian,
vegetarian, and vegan) whether a healthy universal reference diet complies with this limit.
In their model, all diets except the business-as-usual case were able to meet the target. The
average amount of meat in this “planetary health diet” is twice as high as in our O_low
scenario, while the amount of milk and milk products is 10 kg higher. The 2 degrees limit
is still complied with as the authors assume a much higher threshold for food system
GHGEs (5 GtCO2e a−1) emissions. A further study [36] proposed a scenario of a diet
switch towards the planetary health diet [35]. This scenario leads to substantial emission
reductions of the food system of up to 6.9 GtCO2e per year in 2050 (business-as-usual
scenario: 16.1 GtCO2e). The authors, however, did not relate the scenarios’ GHGEs to food
system-specific thresholds to achieve the 2 or 1.5 degrees global warming targets.

Even if these studies are not fully comparable with our approach, they clearly reflect
what our results demonstrate: The reduction of animal products in the diet leads to drastic
GHGE reduction potentials. Dietary shifts to more plant-based diets are necessary to
achieve the global climate goals, but will not suffice. There is still a gap that must be closed.
Firstly, even though one-fifth of all Europeans already consume animal-based products
in moderation [18], it is not possible that the entire Western European population will
switch to a vegan diet. Individual as well as cultural acceptance and the difficult shift in
habits often prevent changing dietary patterns [109]. Secondly, emissions should be kept
well below the 2 degrees threshold. To avoid adverse consequences of climate change it is
crucial to adhere to the 1.5 degrees threshold, rather than the 2 degrees goal [1]. Thirdly, the
thresholds themselves are optimistic estimates because other sectors were expected to reach
net zero emissions in 2050 [2]. Fourthly, for each year between 2020 and 2100 in which
GHGEs trespass the average annual limits for this timeframe, the emission reductions in
the years to follow must be even larger. Fifthly, countries in the Global North are required
to reduce their GHGEs more ambitiously than countries in the Global South due to “ the
principle of common but differentiated responsibilities and respective capabilities”, stated
in the Paris Agreement ([110], p. 22). Thus, the GHGE thresholds would be lower for
Western Europe than the global GHGE thresholds we used in this study.

In addition to changing consumption patterns, therefore, a significant transformation
on the production side is necessary. Reducing food waste as well as increasing yields and
agricultural efficiency are further key drivers for approaching climate targets in the time
from 2020 to 2100 [2]: Halving food waste can reduce total food system emissions by one
quarter. Narrowing yield gaps and growing genetically modified crops are expected to
reduce emissions by 15%. A decrease of 40% can be achieved by enhanced agricultural
production (e.g., more efficient input application). However, Poore & Nemecek [6] show
that producers face limitations on how extensively they can reduce the impacts of their
production. They conclude that the impact of dietary changes exceeds those of technological
improvements. Measures abating mainly carbon dioxide emissions, such as obtaining
renewable energy and more efficient use of (fossil) energy sources, only have limited impact.
This is because the food system primarily emits other GHGs than carbon dioxide [111].
Combining these findings with our results shows that diversified strategies in consumption
and production are needed to achieve global warming targets. Future research should
examine to what extent these mitigation measures offer pathways for individual dietary
pattern carbon footprints to approach food system-specific climate targets.
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When regarding dietary switches, health and nutrition aspects must also be considered.
Animal-based product substitution and reduction must be carried out while maintaining
adequate nutrition [102,112]. Our study cannot evaluate how plant-based products can
replace animal-based commodities nutritionally adequately and vice versa. The dietary
patterns cannot be compared nutrition-wise since they would overestimate average nutrient
and calorie consumption. This is because diets included food waste figures as they were
modelled based on mass balance averages supplied to a region [57]. The share of food
waste in a category could not be identified from the data, so the actual energy and nutrient
consumption per dietary pattern cannot be evaluated. In the literature, there is debate
about to what extent animal protein can be replaced adequately. Several studies conclude
that animal-based products can be both healthily and GHGE-effectively replaced by, for
instance, a mix of legumes, grains, fruits, and vegetables [10,33,104]. Global studies found
that switching from an omnivorous diet to a vegan, pescatarian, or Mediterranean diet
reduces mortality, cancer, diabetes, and coronary disease risks [103]. Some studies stated
that, e.g., iron deficiency can be avoided even for entirely plant-based diets [15]. Moreover,
a general nutrient deficiency can be prevented by consuming fortified products [112].
Additionally, even if protein is often suspected to be lacking in plant-based diets, for
most European diets protein-intake would still exceed requirements by 50% even when
half of the animal-based foods were omitted [19]. However, some studies did not find a
correlation between a diet’s health benefits and sustainability [10,16]. A recent study by
Vieux et al. [113] even shows that reducing animal protein below 45–60% (depending on
age and sex) of total protein intake avoids meeting an adequate nutrition. Since studies
on the effects of a minimal intake of animal-based foods are rather controversial, there is a
need for further research in this area.

5.3. Limitations

CFs are approximations of GHGEs, which depend on the conditions and constraints
applied in the respective study [43]. This study’s results are no exception. Even though it
yielded improved results for dietary patterns CFs, this investigation comes with a number
of limitations. These limitations, as well as an expert guess on their influence on the results,
are shown in Table 2. Out of seven identified problems, three limitations are deemed to
be crucial in this regard: (1) missing variability in the applied scenario data; (2) restriction
to cradle-to-farmgate datasets for animal-based European products; (3) the amount and
variability of available GHGE values from different data sources.

Table 2. Limitations, their influence on results, and potential improvements of the study.

No Limitations Influence on Results
(Expert Guess)

Potential Improvements
(Where Applicable)

1

Results are benchmarked
against (a) 50%/65%

probabilities of achieving
the climate targets with (b)
all other sectors achieving
net-zero in 2050 and (c) a

projection on the
population growth.

high
(Dietary styles might be

more (or less) in line with
climate change mitigation

targets, but overall
tendencies remain true)

use of different scenarios
accounting for changes in

population and application
of sectoral roadmaps

2

The GHGE value ranges
used are limited to (a)

animal-based products, (b)
cradle-to-farmgate system

boundaries, and (c)
European products.

high
(Additional impacts and
reduction potentials, but

conclusions regarding diets
are likely to persist)

integrating bottom-up
calculations into top-down

data (hybrid models) to
account for different
countries of origin,

household consumption, and
waste processing, extending

the system boundaries
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Table 2. Cont.

No Limitations Influence on Results
(Expert Guess)

Potential Improvements
(Where Applicable)

3

The number of available
GHGE values does not

reflect the variety of
available products in the
market and thus (a) can
skew data and add to

uncertainty, particularly if
only a few sources, but also
when many data points are
available. The data can also

(b) be outdated in some
cases, and thus do not

account for improvements
over time (e.g., increased

input efficiency)

high or low
(Actual effect is (by

definition) unknown.
Inherent uncertainty and

variability (see 2. for
details) of the different
GHGE data sources can

augment uncertainty and
variability, but also increase

the chance of containing
the true value in the final
result. Many products are
more sensitive to farming
practices and underlying

resource use; but, also,
differences between food

categories are likely
to persist)

using expert judgements to
verify and/or estimate
GHGE value ranges (cf.

[31,46,55,56]), using
additional data and

re-modelling of LCA studies
for products with low variety

in data sets and/or
possibility of high influence

on overall results (e.g., by
different farming practices)

4

The GHGE values from
literature research (LCA
studies) depend (a) on

different methodological
choices (e.g., allocation of
co-products from animal

husbandry) and (b)
sometimes on different

global warming
potential factors.

low
(Range width and value

peaks are heavily
influenced, but the

differences between food
categories are likely

to persist)

using additional data and
applying different levels of
uncertainty depending on

availability and robustness of
GHGE values

5

The composition of diets
was based on (a) average
and (b) mass-based data
and assumptions (e.g.,

calorific requirements were
not considered).

low
(Better coverage of

personal preferences, but
overall dietary conclusions

are likely to persist)

additional use of dietary
surveys throughout different

European countries to
determine average

consumption amounts as
well as energy and nutrient
intakes in order to integrate

the nutrition dimension

6

The data for plant-based
beverages are based (a) on
an online-survey and (b)

restricted to the responses
of users from Switzerland

and Germany.

very low
(Beverages have only a

small effect on the
overall results)

additional use of dietary
surveys throughout different

European countries

7

The ranges shown here are
assumed to follow (a) a
log-normal distribution

and (b) are based on
different levels of

aggregation (e.g., in some
cases only one or two

products represented an
entire category
of products).

very low
(Distribution width is

generous and should cover
most cases)

using dietary information
with higher resolution and

applying additional means of
aggregation (e.g.,
calorific values)

However, it is assumed that these (and other) limitations do not overturn the overall
conclusions of the study. In particular, the differences in CFs between animal-based and
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plant-based products are well-attested in the literature. This means that even with better
data, diets with large amounts of animal-based products are expected obstacles to achieving
climate mitigation goals (even if for example population growth is lower than expected or
a better representation of the actual products would lead to lower CFs).

6. Conclusions

In this paper, probabilistic distributions for Western European dietary pattern CFs were
calculated by using ranges of animal-based food GHGEs in the modelling process. Instead
of ignoring the inherent variation of dietary pattern CFs, this work incorporated uncertainty
regarding the variation of input data. Beef and fish/seafood had particularly large GHGEs
and wide value ranges. Thus, reducing the amount of animal-based products with highly
varying GHGE values (like beef, fish/seafood, cheese, and other dairy) already decreases
the range of the corresponding diet CF distributions. It also reduces the probability of
generating a high diet CF.

Our quantification of different dietary patterns’ uncertainty facilitates assessing gaps
between individual consumption and climate targets to develop pathways toward GHGE
mitigation measures. Our study finds that all dietary patterns cause more GHGEs than the
1.5 degrees global warming limit allows. Only the vegan diet was in line with the 2 degrees
threshold, while all other dietary patterns trespassed the threshold partly to entirely.

Reducing animal-based products in the diet has the potential to significantly reduce
emissions, as our results show. This strategy is an important element in achieving global
climate goals. Therefore, initiating and promoting dietary shifts should be supported more
actively. Reflecting hidden environmental and health costs in pricing could be one measure.
Often, healthy, plant-based products are more expensive than their animal-based counter-
parts. Transforming taxes or subsidies to reshape market signals can support consumers to
choose healthy and climate-friendly products [35]. Aligning dietary guidelines more strictly
with environmental objectives and implementing them consistently facilitates dietary trans-
formation within society. This can have direct impacts on promoting low-emission eating
habits as such recommendations affect consumers of all ages and socio-economic classes.
For example, in Germany, dietary guidelines provide quality standards for community
catering (e.g., schools, companies, hospitals, and retirement homes) [114]. Education and
information on climate-friendly choices as well as marketing measures (e.g., promoting
low-emission products and reducing advertisement for GHGE-intensive commodities) can
create a new awareness for healthy and sustainable nutrition in society at all ages [35,115].
Reducing animal-based products in diets contributes to climate change mitigation targets,
but is not sufficient on its own, especially regarding the 1.5 degrees target. Diversified
strategies are needed to close this gap. Further GHGE reduction measures must come from
both the supply and the demand side [116]. This includes the reduction of food waste along
the entire value chain, consuming locally- and seasonally-sourced products to both reduce
emissions from cultivation (e.g., when grown in greenhouses) as well as from transport
and storage (e.g., refrigeration and lightning). Also adapted agricultural production tech-
niques are needed, such as using precision techniques for improved input (e.g., seeds and
fertilisers) efficiency, applying nitrification inhibitors, or altering feeding techniques and
manure management [41,117]. Combining strategies like shifting to more plant-based diets,
increasing yields, reducing waste, and improving food production efficiency can drastically
reduce food system emissions, even when only halfway implemented until 2050 [2]. In
addition to reductions in the food sector, reaching an almost entire decarbonisation in all
other areas is crucial to have a realistic chance to remain below global warming limits [2,37].

This paper investigated the consequences of different animal-based product consump-
tion amounts for Western European dietary patterns assuming equal GHGEs thresholds for
all humans. It is important to emphasise that in other regions of the world animal-based
products are essential for food security, for example, when land is not suitable for crop
cultivation. Also, reduced animal-based product consumption in western countries would
have an impact on the world market and need to be considered.
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Further research is required that includes uncertainty and variability of the entire food
system to improve GHGE estimations. Future studies should consider the interplay of dif-
ferent measures to reduce GHGEs from both food supply and consumption so that the gap
between current emissions and emission targets can be closed. Research in this field is cru-
cial to guide and implement policies tackling climate change and associated consequences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142114449/s1, Table S1: Greenhouse gas emission values of
animal-based foods to compile value ranges for the calculation of diet carbon footprints.
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Appendix A

SUSLA Calculation Logic

The calculation of dietary pattern CFs is based on data for the food questionnaire in
the SUSLA calculator. It provided annual food group quantities of different dietary styles
and their corresponding CFs for the authors of the study at hand (Table A1).

Table A1. Annual food quantities of diets and corresponding carbon footprints. The system bound-
aries were cradle-to-farmgate for the greenhouse gas emission calculation. CO2e = carbon dioxide
equivalents [59].

Dietary Pattern Annual Quantity Consumed
(kg capita−1 a−1)

Carbon Footprint
(kgCO2e capita−1 a−1)

Vegan 637 434
Vegetarian 699 1180

O_low 783 1617
O_medium 861 2496

O_high 861 2964

The results in Table A1 are based on GHGE calculations for food products (1) from
the project NAHGAST that were matched (2) to the average food group consumption in
Western Europe from food balance sheets [57]. As they only considers the average diet
(3–4 times meat per week or O_medium), it was further necessary to develop attribution
and allocation rules (3) for the additional dietary styles of Vegan, Vegetarian, O_low and
O_high.

The GHGEs of food products (1) were estimated In the project NAHGAST (Develop-
ment, Testing and the Distribution of Concepts for Sustainable Production and Consump-
tion in the Field of Out-of-Home Catering (https://wupperinst.org/en/p/wi/p/s/pd/540,
accessed on 12 January 2021) on a cradle-to-farmgate basis. The baseline of each food
product consists of the upstream processes up to the farmgate (either based on life cycle
inventories in ecoinvent 3.1 or own bottom-up estimates). Further product variations (fresh,

https://www.mdpi.com/article/10.3390/su142114449/s1
https://www.mdpi.com/article/10.3390/su142114449/s1
https://wupperinst.org/en/p/wi/p/s/pd/540
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dried, frozen, canned) then included cooling processes as well as material inputs (canned)
and material losses if required. Distribution processes were considered for NAHGAST as
well, but are not part of the data used in either SUSLA or the paper at hand.

Food products were then matched to the food groups found in [57] (2). If more
than one product was suitable or one product was available in different conditions, these
products were aggregated to an average GHGE value on a mass basis.

The third and final step (3) related to the food category quantity distribution for
different diets. The average Western European food supply per capita [57] provided
consumption amounts for each food category of the O_medium diet. The three diets Vegan,
Vegetarian and O_low were calculated by altering O_medium’s consumption amounts
based on a diet survey by Orlich et al. [60]. This survey enabled the comparison of the food
groups in both data sets and to ascertain the relative differences between an average diet in
the US and these three diets with lower meat consumptions. As no data was available for a
diet with daily meat consumption (O_high), a numerical solution was developed for this
diet. Using the overall food quantities of average meat consumption (861 kg a−1), all four
meat food groups were scaled up by a factor of 7:4 (7 to 4 days per week) and all other food
groups were scaled down, accordingly. As a result, overall food consumption remains the
same for O_high as for O_medium, but meat consumption increases by 75% and non-meat
product quantities decrease by 11%.

Appendix B

Table A2. Confidence intervals for probability distributions of modelled dietary pattern carbon
footprints. CO2e = Carbon dioxide equivalents.

Dietary
Pattern

Confidence Interval for Carbon Footprints
(kgCO2e capita−1 a−1)

0% 5% 10% 25% 50% 75% 90% 95% 100%

Vegan 612 612 612 612 612 612 612 612 612
Vegetarian 663 763 794 851 939 1053 1186 1282 2037

O_low 771 917 956 1036 1148 1293 1460 1580 2549
O_medium 1302 1812 1923 2133 2413 2774 3176 3491 9235

O_high 1564 2378 2550 2874 3321 3921 4575 5110 15,285
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