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Abstract

The diversification of the national electricity generation mix has risen to the top of Tunisia’s
energy planning agenda. Presently, natural gas provides 96% of the primary energy for
electric power generation, but declining domestic gas reserves and a soaring electricity
demand are urgently calling for alternative fuel strategies. Currently discussed diversification
options include the introduction of coal and nuclear power plants and/or an increased use of
renewable energies. This article presents a methodology to assess different electricity system
transformation strategies. By combining an electricity market model with a subsequent multi-
criteria decision analysis (MCDA), we evaluate five power mix scenarios regarding power
generation costs as well as non-economic dimensions such as energy security, environmental
impact and social welfare effects. Based on criteria valuations obtained during consultations
with Tunisian stakeholders, a final, best-ranking electricity scenario was selected, consisting
of 15% wind, 15% solar and 70% natural gas-generated electricity in the national power mix

by 2030.

1. Introduction

The Tunisian electricity sector is faced with a multitude of challenges, pressing for decisions
about a new national power supply strategy. As for many other North African countries, one
particular concern is the ever-growing electricity demand, which, despite successful efforts to
reduce energy intensity in the past', is still on a constant surge in Tunisia. Between 1990 and
2010, domestic power consumption almost tripled, from 4.9 TWh to 14 TWh; for the next
two decades, the demand is expected to further grow, reaching 25-33 TWh by 2030 (STEG,
2010). The challenge to cope with this soaring demand is joined by another issue: Tunisia’s
unbalanced primary energy supply of power generation. Currently, the national electricity
system is almost entirely fueled by natural gas, making up around 96% of the generation mix.
This dependency will become particularly problematic in light of an imminent natural gas
deficit that is forecasted for 2018 or 2020 (DGE, 2013), putting Tunisia’s electricity supply
security at risk. So far, the following options to render the Tunisian electricity mix more

diverse have been proposed:

Tunisia was one of the first North African countries to subscribe to a national energy efficiency
strategy, which it has pursued since the 1980s.



(1) Coal Power. The use of imported hard-coal for power generation is already
extensively practiced in another North African country, Morocco, and decision makers
frequently discuss whether Tunisia should likewise adopt this model. A study by the
national electricity and gas utility STEG (2010) evaluated the option to install up to three
coal-fired steam power plants in the country, each with a capacity of 600 MW.

(2) Nuclear Power. This option is also discussed in Tunisia, since in 2006, the former
government signed a bilateral agreement with France on the civilian use of nuclear power
(Haddad, 2011). Under exploration is the installation of one pressurized water reactor
with a tentative capacity of 900-1000 MW, slated to become operational by 2027 (STEG,
2010).

(3) Renewable Energies. Tunisia is endowed with excellent renewable resources. The
country’s wind potential is valued at 8 GW, with three main regions being particularly
suitable for large wind farm projects: the North-East, the Central-West and the South-
West of Tunisia. Solar radiation conditions are the best in Southern Tunisia, but
generally very favorable across the entire territory. Gross estimations for Tunisia’s solar
potential reach 844 GW for PV and 65 GW for CSP technology (ANME, 2010) although
these values must be assessed with care, as they usually do not include considerations
about the actual availability of the land for solar power projects. The “Tunisian Solar
Plan,” a renewable energy roadmap drafted by the Tunisian energy conservation agency
ANME, acknowledges the high renewable potential and points particularly to wind,
photovoltaic and concentrated solar power (CSP) as diversification options to replace

natural gas in the electricity mix (ANME, 2013a).

The extent to which these three diversification options - or a combination of them - can
become part of a Tunisian electricity strategy is a matter of ongoing deliberations. The
political context in which these discussions are taking place is marked by the Tunisian
revolution of January 2011, which brought a new way of political decision making to the
country along with considerable consequences for the culture of energy system planning. In
the past, Tunisia’s electricity strategies were discussed in closed circles accessed only by a
small group of public decision makers, many of them with strong links to the national gas and
electricity sector. The decision process itself was biased by the view of the incumbent
national gas and electricity utility STEG, whose maxim for power system optimization was a
least-cost planning approach, mostly disregarding social and environmental aspects.

Nowadays, after the upheavals in early 2011, the interests of the civil society and other



stakeholder groups can no longer be ignored. One aspect frequently raised in the discussions
about power system choices are socio-economic benefits, most prominently the aspect of
domestic added value, local manufacturing opportunities for the Tunisian industry, and its
potential effects on job and income creation. Tunisia is suffering from a lack of jobs; the
country’s youth is plagued by a high unemployment rate, which, according to a study of the
World Economic Forum (2012), is currently around 30%. Aspirations for job creation and
concerns of the local population (social acceptance) need to be given much more attention in
the new democratic context. Also environmental aspects and the question of ecological
sustainability of the national energy supply are increasingly discussed topics in the Tunisian
society. Moreover, as a signatory of the Kyoto protocol, Tunisia has taken international
responsibility to combat climate change by reducing its carbon emissions. A survey carried
out in 2012 at a multi-stakeholder workshop within the framework of a project commissioned
by the Tunisian energy conservation agency ANME and the German development agency
GIZ (Wuppertal Institut/Alcor, 2012) revealed four major groups of criteria that are pertinent

to electricity strategy development in Tunisia:

e Economic costs;

e Security of supply;

e Ecological sustainability; and
e Socio-economic benefits.

It is obvious that the above-listed goals are partially conflicting. Therefore, any decision on
future electricity system transformation pathways can only be a compromise, which, at best,
maximizes the satisfaction of the majority of the stakeholders, taking into account their varied

preferences and objectives.

An analysis framework that includes these objectives must consider other criteria than just the
economic costs of electricity generation. One possible approach would be to use external
costs as guidance for decision-making on electricity strategy options (Mirasgedis and
Diakoulaki, 1997). The valuation of externalities, however, is a difficult undertaking as it
requires attributing quantified ‘market’ prices to the different societal and environmental
impacts of electricity production. Although there have been attempts to quantify such
externalities, for instance for public health and environmental impacts in Europe (Krewitt,
2002), estimations are generally associated with high uncertainties. Moreover, it is not clear
whether the externality values obtained from a European project can properly reflect the

North African conditions: for the Tunisian context, for instance, no valid quantifications of



the external costs (or benefits) of social acceptance, job creation and energy security are

available at the moment.

An alternative - and for our purpose a more suitable approach - is multi-criteria decision
analysis (MCDA). Dealing likewise with strategy optimization problems, MCDA has been
widely applied to social, economic, agricultural, industrial, ecological and biological systems,
and likewise to energy supply systems (Wang et al. 2009). In the present study, we use
MCDA in conjunction with an electricity generation system model to calculate and evaluate
different Tunisian power system scenarios. This combined approach is presented in Section 2,
where the basic features of the model as well as the MCDA method are described. Section 3
proceeds with an outline of the simulated scenarios and gives details about the assumptions
and parameters used in the study. Section 4 presents the results, followed by a concluding

discussion in the last chapter (Section 5).

2. Methodology

As pointed out in a literature review by Pohekar and Ramachandran (2004), the inclusion of
multi-criteria techniques in energy system planning has gained increasing popularity in
academic research since the 1990s. As for the area of electric energy supply (power

generation), one can distinguish between two types of studies:

First, there are approaches that analyze and compare individual generation technologies based
on their inherent economical, social and ecological properties. Recent examples of such
studies can be found in Streimikiene et al. (2012), Pappas et al. (2012) and Boran et al.
(2013), where renewable, fossil and nuclear power plant technologies are compared (or

ranked) within a multi-criteria framework.

A second type of studies rather evaluates combined power systems instead of single
technologies. Here, the multi-criteria analysis focuses on the performance of the overall
power supply system, usually by examining different electricity mixes for a specific region or
country. Finland, for instance, was the subject of a scenario study of Héyhi et al. (2011),
where three alternative power system transformation pathways until 2050 with different levels
of renewable, fossil and nuclear penetration underwent a multi-criteria analysis. A similar
analysis has been carried out by Diakulaki and Karangelis (2007) for the Greek power system
regarding economic, environmental, and energy security aspects. The development of the

Spanish electricity system until 2030 was the focus of a study by Del Riego et al. (2012),



while Ribeiro et al. (2012) analyzed electricity supply scenarios for Portugal until 2020 by

combining a multi-criteria decision analysis with a linear power system optimization model.

In the present study, we opt for a two-step methodology, i.e. linking an electricity system
model with a multi-criteria analysis, to analyze different Tunisian electricity mix scenarios
with a time horizon of 2030. Figure 1 gives an overview of the methodological sequences of

the analysis.
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Figure 1. Process structure of the analysis

2.1.  Electricity Model

There are several reasons why an electricity system modeling step has been placed prior to the
multi-criteria analysis. First, the model was needed to calculate and quantify the most relevant
values of the criteria: total system costs, primary energy consumption, emissions, etc. (for an
overview, see Table 4). Second, the use of the model ensures that only technically viable and
economically optimized power system configurations will be evaluated in the MCDA
analysis. This is why both the daily power plant dispatch as well as the system transformation
in the long-run - regarding commissioning and decommissioning of power plants - have been
calculated under consideration of technical and economic constraints. Finally, the purpose of

using an electricity system model was to provide the interested stakeholders with other



relevant information concerning the impact of the electricity mix scenarios on the Tunisian
economy, e.g. in terms of investments needed, infrastructure requirements, primary energy

inputs and costs.

We use a bottom-up linear optimization model, which has already been applied and described
in more detail in a previous generation system study of North African power systems (Brand

et al., 2012). By minimizing the total discounted system costs,’

TOTAL = Z disc, - (INV, + OM,, + VAR, + FUEL,)
y=2010,2015,....

the model calculates the optimal dispatch as well as the least-cost pathway for investments
and the retirement of power plants in the Tunisian electricity system. Starting with the
existing power plant stock of the year 2010, the simulation forecasts the configuration of the
Tunisian power system until 2030 in 5-year periods. Each forecast period consists of 32
characteristic days, representing different electricity load profiles (working days and weekend
days) as well as hourly wind-speed and solar irradiation patterns for 4 different seasons. The
optimization process is carried out under the condition that the electricity supply meets the

demand at any time:

loady,d,h = z GENtech,y,d,h

tech

The model variable GEN,ech,y,q1 Tepresents the actual electricity generation (in MWh) for the
specific generation technology tech at any hour (2 =1, ..., 24) and typical day (d = 1,...,32)
of the period y, while load,, 4 is the exogenously determined electricity load pattern of

Tunisia, derived from historic load data of the Tunisian electricity. Further boundary

The total system costs (the objective function) are the sum of investment costs (INV), fuel costs (FUEL)
and variable costs (VAR), as well as costs for operation and maintenance (OM). The model does neither
consider carbon emissions costs, nor revenues from avoided carbon emissions. The discount factor
(disc) was calculated on the basis of an interest rate of 8%.



conditions are the technical constraints of the involved generation technologies. Thermal
power plants need to respect constraints concerning part-load conditions and other dispatch
properties like ramp-up and shut-down behavior, while renewable power generation is limited
by the availability of the wind or solar resource. For wind speed and solar irradiation, we used
hourly, historic data of the year 2010 matching to the date and hour of the electricity load of
the corresponding representative day. Cost of transmission system expansion, as well as

transmission losses were neglected in this simplified modeling approach.

The model delivers a number of physical parameters related directly to the future power
system configuration as well as a set of non-physical, qualitative parameters relevant for the

multi-criteria analysis:

e Physical parameters: For each forecast period, the model provides information about
the installed generation capacities and power generation (per technology and per fuel)
and primary energy consumption (overall and per energy carrier). Furthermore, the
model calculates the quantities of gaseous emissions like carbon dioxide, but also

nuclear waste.

e Non-physical and qualitative parameters: The most prominent non-physical
parameters, directly available from the model output, are the economic costs of the
power system scenarios. In addition, according to the proportions of each generation
technology in the electricity mix, the model delivers a number of other parameters of
qualitative or semi-qualitative nature, like the job creation potential, indicators for

supply security, and the social acceptance of the different electricity mix scenarios.

Together with Tunisian stakeholders, a set of the 13 most relevant parameters, summarized in

Table 4, were chosen as key evaluation criteria of the study’s power system analysis.

2.2.  Multi-criteria decision analysis

The problem of decision-making on energy strategies can be principally addressed by a
variety of multi-criteria methods. An overview by Pohekar and Ramachandran (2004)
presents a method inventory summarizing the most popular MCDA energy planning
techniques: the analytical hierarchy process (AHP), the preference ranking organization
method for enrichment evaluation (PROMETHEE), the elimination and choice translating

reality (ELECTRE), the technique for order preference by similarity to ideal solution



(TOPSIS), the weighted sum method (WSM), the weighted product method (WPM),
compromise programming (CP), and the multi-attribute utility theory (MAUT).

In the present study, we decided to use the TOPSIS method developed by Hwang and Yoon
(1981). TOPSIS was chosen primarily due to practical considerations, because it has “a sound
logic, representing the rationale of human choice; a scalar value that accounts for the best and
worst alternatives, and a simple computation process” (Kim et al., 1997) making it a suitable
tool that can easily be understood and reproduced with reasonable effort also by users outside

of the scientific sphere.

The scope of the TOPSIS method is to determine the “best scenario” among a set of
scenarios, that is, the one closest as possible to an hypothetical ideal alternative and at the
greatest distance to a negative-ideal alternative. This is realized by a geometrical mapping of
each scenario’s performance calculating its relative (Euclidean) distance to the ideal and
negative-ideal solution. In detail, the procedure of the TOPSIS method consists of the

following steps:

(1) Formulate a decision matrix which is formed by j=1,..., M columns for the scenarios
and i=/,...N lines for the criteria. The matrix entries x; are the raw results of the
simulations with the Tunisian electricity system model (see Section 2.1.) and represent

the performance of the criterion 1 with regard to scenario j (see Table 6).

(2) Calculate a normalized decision matrix. The TOPSIS method uses vector
normalization to eliminate the units of the criteria, resulting in comparable matrix entries

r;; normalized to |r;;| < 1:

M
L= E .2
Tij _xl]/ j_lxl]

(3) Construct the weighted normalized decision matrix.

Vij = Wi " Tjj



The weighting parameters w; for each criterion are derived from subjective preferences

expressed by Tunisia experts within a voting process (see Section 3.3).

(4) Calculate the ideal and the negative-ideal solution. The ideal solution A* is a set of
elements vi* selected from those elements of the normalized decision matrix vy, that

provide the maximum benefit with respect to criteria i.

A = {v],..,vn}

Note that v, must be selected from vij by respecting the benefit attribute of each
criterion. For example, regarding the criterion “job creation,” the highest value v; =
max; v;; must be chosen (benefit attribute is positive: “more jobs are better”); for CO,
emissions (negative benefit attribute: “less CO, emissions are better”), the lowest

possible value v; = min; v;; must be selected. Reciprocally, the negative ideal solution

A™ = {v,.., vy}

is a selected set of v;” associated with the lowest benefit among all vj;.

(5) For each scenario j=1,...M, calculate the Euclidean distance to the ideal alternative

A%

as well as the negative ideal alternative A~



(6) Compare the separation values Dj* and D; by calculating the relative closeness to the

1deal solution:

C.:—
j * =
D; + D;

(7) Finally, establish a ranking list, with the highest C; indicating the best-ranking

scenario j.

The input parameters needed for the TOPSIS method are the performance x;; of the different
criteria i, and their respective weights w; in each scenario j. While x;; are obtained from the
results of the power system model (see Section 4.2), the weights w; of the criteria are derived

from Tunisian stakeholders valuations (Section 3.3).

3. Scenarios, input parameters, and criteria

In a project preceding this study’, five different scenarios for the Tunisian electricity mix until
2030 were defined by the key stakeholders of the Tunisian power sector (Ministry of Energy,
Ministry of Industry, STEG, ANME, etc.). These scenarios reflect the discussed policy
options for power system transformation along the main diversification axes: nuclear energy,
coal power and/or the increased use of renewable energies for electricity generation. A
business as usual (BAU) case represents the scenario where no action is taken, and the current
electricity mix (i.e. natural gas-generated power with a minor contribution of wind power) is

maintained until 2030 (see Table 1).

The previous study was commissioned by the German development agency Deutsche Gesellschaft fiir
Internationale Zusammenarbeit (GIZ) in 2011.



Table 1. Scenarios.

Scenario j Description
f;&:ill(z;lsmess 1 Reference scenario, current power mix carried forward to 2030: 95% gas, 5% wind
DivCoal 2 Diversification with an important contribution of coal power plants to be build starting

from 2020. Targeted electricity mix by 2030: 60% coal, 35% gas, 5% wind.

Nuclear power for diversification, ~1000 MW reactor to be built in 2025. Targeted

DS g electricity mix by 2030: gas 75%, nuclear 25%, wind 5%.
DivCoalR 4 Combined diversification with coal and renewable power. Targeted electricity mix by
1vi-oalltes 2030: 50% coal, 10% wind, 5% solar (3% PV, 2% CSP), 35% gas.
. . . . 0 1A H . .
DivRes 5 Diversification with 30% renewable power. Targeted electricity mix by 2030: gas:

70%, wind 15%, solar 15% (10% PV, 5% CSP).

3.1.  Input parameters

3.1.1. Demand

It is obvious that a more efficient use of electricity is important for Tunisia to alleviate energy
dependency, save fuel costs, and mitigate the need for new generation capacity and grid
expansion. Tunisia traditionally puts high efforts into promoting energy efficiency. Despite
certain concerns about the ‘rebound effect’ of energy efficiency measures (Wang et al., 2014),
the Tunisian government pursues an active policy to reduce electricity consumption in
households as well as in the industry (GIZ/ANME, 2012). In our study, we use a demand
forecast by the Tunisian Energy conservation agency ANME (2013b). This demand scenario
assumes an energy efficiency pathway with a decoupling of the Tunisian electricity demand
from economic growth, translating into an average decrease of the electricity intensity of 2%
per year between 2013 and 2030. The resulting demand and load input parameters for the

electricity model are displayed in Table 2.

Table 2. Assumptions for annual gross demand growth and peak load development.

2010 2020 2030

Annual demand (TWh) 14.8 20.7 28.9
Peak load (MW) 3010 4900 6840




Regarding the daily variations of the demand, hourly historic load profiles of the year 2010,
provided by the Tunisian electricity utility STEG, were used. These profiles were linearly
scaled up according to the expected increases of the annual demand in the future model

periods until 2030.

3.1.2. Generation

As mentioned, the model assumes that power supply is exclusively realized by domestic
power plants; electricity exchanges with neighboring countries (power imports or exports) are
neglected. For simplicity we also consider that the model can only deploy a limited set of
different generation technologies: gas power plants (open cycle and combined cycle power
plants*), coal steam power plants, nuclear power plants, photovoltaic (PV), concentrating
solar power (CSP) and wind turbines. The technical and economic modeling parameters of
these power plants are displayed in Table 3. Data originated from a previous report about
Tunisian power system strategies (Wuppertal Institut/Alcor, 2012) and were agreed upon in a
workshop with Tunisian power system experts. The same applied for the fuel price
assumptions (for natural gas, steam coal and uranium), which were derived from an analysis
of market price forecasts from different organizations, such as the International Energy
Agency (IEA), the US Department of Energy (US-DOE), and the World Bank. An average
reference scenario representing moderate price increases until 2030 (see Table 3) was chosen

and agreed upon by the Tunisian stakeholders.

Additional supply input parameters are solar irradiation and wind speed. Solar output patterns
were calculated with the System Advisor Model of the US National Renewable Energy
Laboratory (NREL) based on global horizontal irradiation (GHI) for PV or direct normal
irradiance (DNI) for CSP power plants (NREL, 2012). Irradiation time series were provided
by Helioclim (2012) for an exemplary site near the city of Tataouine, Southern Tunisia in the
year 2010. It is assumed that PV power plants are composed of crystalline cell modules and
installed ground-mounted, while CSP power plants are standard dry-cooled parabolic trough
technology, with 6 hours thermal storage and a solar multiple of 2. The methodology of CSP
dispatch modeling is described in Brand et al. (2012). Hourly wind power production patterns

were calculated with the MINT software (Sander+Partner, 2012), based on MERRA wind

4 Additionally, the model takes account of the existing stock of older, gas-powered steam plants in the

Tunisian power system.



speed time series of NASA (2012) for typical commercial wind turbines (Vestas V80, 2 MW)

at three typical wind power sites in Tunisia: Bizerte, Haouaria and Kebili.
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3.2.  Criteria

Our analysis covers 13 different criteria pertaining to four main groups: economic costs,

supply security, socio-economic criteria and ecological criteria (see Table 4).

Table 4. Criteria and criteria groups

Criteria group i Criteria Unit Benefit attribute”
A. Economic costs 1 Net present value of total costs billion € NEG
2 Specific generation costs €/MWh NEG
B. Supply security 3 Aptitude to respond to peak load events point [-2...2] POS
4 Total natural gas consumption PJ NEG
5 Contribution to energy independency point [-2...2] POS
C..Sosio-economic 6 Local manufacturing share % POS
criteria
7 Social acceptance point [-2...2] POS
8 Average jobs created number POS
D. Ecological criteria 9 CO, emissions Mt CO, NEG
10 SO, emissions t SO, NEG
11 NO, emissions t NO, NEG
12 Nuclear waste t nuc. waste NEG
13 Fine dust emissions t fine dust NEG

" benefit attribute for TOPSIS analysis: NEG: ‘less is better’; POS: ‘more is better’

3.2.1. Economic costs

Total system costs (1)

The total system costs are the discounted sum of investment annuities, fuel costs, and
operation and maintenance (O&M) costs accumulated over the entire model period until
2030. From the standpoint of a national planner, these net capital costs are the most relevant
economic indicator, as they allow a direct assessment of how much the different scenarios
would cost the Tunisian economy. The electricity model calculates the total costs as net

present value for the year 2010 (€2°'%), using a discount rate of 8%.



Specific generation costs (2)

Another important cost indicator is the specific electricity generation costs, a per-unit value
expressed in €/ MWh. They can be regarded as a proxy of the electricity costs to be incurred
by the Tunisian electricity consumer. The criteria input used in this study is the average of the

annual specific cost between the years 2010 and 2030.

3.2.2. Supply security

Supply security is a prominent objective in energy planning in Tunisia. For simplicity, we
subsume under this criteria group short-term aspects, as the technical ability of the power
system to provide capacity at any time (peak load response), as well as the following long-

term energy independency aspects.

Aptitude to respond to peak-load events (3)

For this criterion, we give each generation technology a qualitative attribute (scores between -
2 and +2) for its aptitude to respond to peak load events. Gas power plants, with their high
capability to follow load variations, receive a score of +2, while less flexible base-load
technologies (coal, nuclear) are given 0 points. The score of intermittent renewable power
technologies is -2, because they cannot fully guarantee reserve capacity at any time. Based on
these numbers, we calculate for each scenario an aggregated indicator for each scenario by
averaging the different technology scores according to their proportions of installed capacity

in the generation system until 2030.

Total natural gas consumption (4)

As outlined in Section 1, it is a key objective of Tunisia’s energy policy to reduce the
consumption of natural gas in order to delay dwindling of domestic gas reserves and to
alleviate long-term dependency on gas imports (from Algeria). Therefore, the total gas
consumption in terms of primary energy for electricity generation is a characteristic criterion
for energy security. The indicator used in the TOPSIS analysis is the overall gas consumption

(in PJ) until the year 2030.

Contribution to energy independency (5)

Substituting natural gas with other energy carriers does not increase the security of supply if
these carriers expose to Tunisia to new dependencies. The criterion “contribution to energy

independency” provides for each primary energy source a subjective ranking between -2 and



+2. Renewable energies receive the highest score (+2), as they diversify with domestic energy
carriers. As the reduction of natural gas consumption is the key target of Tunisia’s
diversification efforts, generation technologies using natural gas are given a score of -2. Coal
has the inconvenience of being imported, but the risk of becoming energy-dependent is
attenuated by the fact that steam coal is available from numerous exporting countries
worldwide (score -1). In contrast, uranium, the fuel for nuclear technology, is only available
from rather monopolized markets, which raises the proneness toward energy dependency
(score -2). The overall score is calculated by building an average of the individual scores,
weighted by the fuel consumption proportions for each scenario in the overall electricity

production until 2030.

3.2.3. Socio-economic criteria

This criteria group, consisting of three sub-criteria, addresses socio-economic welfare

incurred by the different electricity scenarios.

Local production share (6)

The local production share (or local content) indicates how much of the investment into new
generation capacity would flow back to the Tunisian manufacturing industry. The estimates
(expressed in percentage points) are based on ratings provided by Tunisian power and
renewable energy experts (see Table 3). For solar technologies, a gradually increasing local
manufacturing share is assumed from today’s levels until 2030 (Fraunhofer/Ernst & Young,
2011). The final local production share for each power mix scenario is calculated by
averaging the individual technology scores according to their proportions of the installed

capacities until 2030.

Social acceptance (7)

Social acceptance is given a rating between -2 and +2 in an effort to reflect the population’s
expected attitude vis-a-vis the occurrence of new power plant technologies in the country. The
worst value (-2) is received by nuclear power plants, whose implementation is presumed to be
disapproved both by the local population as well as the Tunisian society in general (Haddad,
2011). A zero score (0) is given to technologies which are regarded indifferently or where
reservations by the local population (noise, visual disturbance) are outweighed by a generally

positive reputation of the technology on the national level, for example, wind power. Solar



technologies are ranked highest with a rating of +2. The total social acceptance rating per

scenario is calculated as an average of the annual acceptance ratings until 2030.

Job creation (8)

The estimation of the job creation potential for the different scenarios is based on the method
used by Rutovitz and Harris (2012). For each scenario, the total number of jobs is calculated
as the sum of jobs in the power plant construction sector, the component manufacturing
industry, and the labor needed for operation and maintenance (O&M) of the already installed
power plants. Jobs in the construction sector are obtained by multiplying the capacity (in
MW) of new power installations with a technology-specific employment multiplier, corrected
by a regional adjustment factor listed in the above-mentioned study of Rutovitz and Harris
(for Tunisia, the correction factor of the Middle East region was applied). The jobs created in
the power plant component manufacturing industry receive an additional adjustment
considering the local production share in Tunisia (see criteria 6 in Table 6). Jobs in the O&M
sector are calculated by applying an O&M employment factor to the existing, operational
power plant capacities. Finally, for each scenario, a final overall criteria score x; is

established by calculating the average number of jobs in the electricity sector until 2030.

3.2.4. Ecological criteria

This criteria group encompasses the most relevant emissions of the different power plant
technologies: CO, emissions (9), SO, emissions (10), NO, emissions (11), nuclear waste (12),
and fine dust (13). For each category and scenario, total emissions until 2030 are calculated

based on the technologies’ specific emissions per MWh (see Table 3).

3.3.  Criteria weights

Assigning weighting parameters for the criteria is a difficult undertaking, as it requires
knowledge about the decision-makers’ preferences on energy policy issues. Unfortunately,
looking at the ongoing political transition process in Tunisia, it was (at the moment of this
writing) impossible to discern the orientations of a yet-to-be elected Tunisian government.
Therefore, our study was constrained to fall back to a relatively coarse and simplified method
to elicit the weighting parameters. The method consisted of carrying out a voting among 37
Tunisian experts during a stakeholder workshop held in Tunis. As illustrated in Figure 2 the

involved stakeholders were representatives of different institutions and organization: the



national electricity utility STEG, its renewable branch STEG Energies Renouvelables, the
Ministry of Industry, the Ministry of Environment, the national agency of energy
conservation (ANME), the Ministry of Planning and Regional Development, the Ministry of

Finance, as well as individual consultants and industry representatives.

MINISTRY
FINANCE (3)

MINISTRY
PLANNING (1)

STEG ENERGIES
RENOUVELABLES
(2)

MINISTRY
ENVIRONMENT "
(1)

Figure 2. Participants of expert workshop by institution

Although it is difficult to establish a direct link between institutional affiliations and the
participants’ individual preferences, it can be presumed that, for example representatives of
the renewable energy sector, the Ministry of Environment or ANME rather tend to favor
environmental criteria, while members of the electricity utility STEG might be more
concerned by aspects of security of supply. Industry representatives might also emphasis
supply security criteria, but should be also concerned by cost aspects and socio-economic
criteria. Cost criteria are likely to be the priority for members of the finance and planning

ministries.

In order to avoid that the votes follow too closely the orientations of the involved institutions,
each expert was asked to designate not only one, but two favorite criteria groups he deems
most important for a future Tunisian energy strategy. A final count of these votes revealed
the following ranking among the criteria groups: Minimizing economic costs was given the

highest priority (34%), followed by concerns about supply security (27%); socio-economic



considerations (20%) and environmental aspects (19%) were valued significantly lower.
Subsequently, the weights for the criteria groups were apportioned equally to the different

sub-criteria in order to obtain the 13 individual weighing parameter w; used in the TOPSIS

analysis.
Table 5. Weighting parameters for criteria groups
Reference Sensitivity cases

Expert Holistic ~ Technocratic =~ Mercantilist ~ Eco-social

Voting*) approach approach approach approach
A. Economic costs 34% 25% 40% 10% 10%
B. Supply security 27% 25% 40% 40% 10%
C. Socio-econ.

20% 25% 10% 40% 40%

benefits
D. Ecological criteria 19% 25% 10% 10% 40%

" obtained at a stakeholder workshop in Tunis.

Due to the above-mentioned uncertainties about the actual Tunisian policy preferences, we
decided to repeat the multi-criteria analysis with distinct assumptions regarding the weighting
parameters for criteria groups. Four different sensitivity cases were analyzed: (1) a ‘holistic
approach’, where each criteria group receives the same weight, (2) a ‘technocratic approach’
characterized by a strong emphasis on economic costs and security of supply, (3) a
‘mercantilist’ approach where decision making is oriented towards social-economic benefits
and the security of Tunisia’s energy supply, and (4) an “eco-social” approach where

ecological and social criteria dominate (see Table 5).

4. Results

4.1.  Power system transformation pathways

Figure 3 depicts the outcome of the linear optimization process, giving an overview of the
system configuration (installed capacities) as well as the generated electricity by power plant
and fuel type from 2010 until 2030. Looking at the installed capacities (Figure 3, left), it

becomes obvious that the need for new power plant capacity in Tunisia is substantial. Not



surprisingly, the scenario with the highest capacity requirements is the renewable
diversification scenario (DivRes). Due to their low capacity factor, a comparatively high
number of wind and solar power plants needs to be installed in order to meet the 30%
renewable electricity share by 2030. Furthermore, as these technologies also feature a low
capacity credit’ (see Table 3) more conventional back-up power capacity (mostly OC gas

turbines) is required to ensure the reliability of the system in case of peak load events.

The development of the power generation mix (Figure 3, right) indicates that natural gas still
remains the dominant fuel if the cumulated gas-based generation between 2010 and 2030 is
regarded. This means that Tunisia will still require a substantial amount of natural gas during
the transition period until the diversification goals are reached in 2030. This accounts even for
those scenarios that portray a strong substitution of natural gas with coal by 2030 (DivCoal
and DivCoalRes). Tunisian decision makers should be aware that due to the long lead times
for coal power plant construction (the first plants are unlikely to become operational before

2018), the provision of natural gas still remains a crucial issue for the near future.

The capacity credit is the ability of a generation technology to provide firm capacity to the power
system.
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Figure 3. Installed capacities (left) and generation (right) for the different scenarios of the Tunisian electricity
system until 2030.



4.2.  Scenario performance by criteria

Table 6 summarizes the model results for the different criteria. Each element of the table
represents the performance value x;; of the criterion i with respect to scenario j. It is obvious
that due to the multitude of the criteria, their different dimensions, and resulting performances
scores, no easy conclusion about the best performing scenario can is possible — at least not by
a simple look at the table. This underscores the need for a multi-criteria method to evaluate

the different scenarios in a more analytical fashion.

Table 6. Results of the electricity system calculations: Performance of the criteria for each scenario.

Scenario j
1 2 3 4 5

BAU DivCoal DivNuc DivCoalRes DivRes

Criteria i Performance x;; of criteria 7 in scenario j Unit
1 13.9 13.1 13.7 13.6 14.4 billion €
2 69.9 64.4 68.1 67.0 72.4 €/MWh
3 1.63 1.36 1.53 1.20 1.13 point [-2...2]
4 2822 1846 2447 1831 2424 PJ
5 -1.85 -1.55 -1.85 -1.39 -1.36 point [-2...2]
6 21.7 21.4 18.9 24.7 29.5 %
7 0.75 0.42 0.53 0.81 1.08 point [-2...2]
8 3650 5690 5460 7360 8890 jobs
9 167 226 144 206 143 Mt CO,
10 0 22 0 18 0 kt SO,
11 19 48 16 42 16 kt NO
12 0 0 149 0 0 t nuc. waste
13 0 2150 0 1800 0 t fine dust

4.3.  Results of the Multi-criteria analysis

By applying the TOPSIS method to the results of Table 6 and considering the weighting
parameters w; obtained at the expert workshop (Table 5), we calculate the final scenario
scores in Table 7. The highest ranking is the diversification scenario with renewable energies
(DivRes), followed by the business as usual scenario (BAU) and the diversification scenario

combining renewable energies with coal power contribution (DivCoalRes). At the bottom of



the ranking with relatively close scores are the nuclear (DivNuc) and coal (DivCoal)

strategies.

Assuming that our criteria framework and the applied weighting parameters actually match
with the rationale of the Tunisian decision-makers, it can be stated that the electricity mix
diversification strategy with renewable energies should actually receive high emphasis in

deliberations about future Tunisian energy policies.

Table 7. Scenario score for TOPSIS (weighting parameters obtained from expert voting)

Scenario j Scenario score Rank
]j;?,gl )(Business as 1 0633 2
DivCoal 2 0.444 5
DivNuc 3 0.484 4
DivCoalRes 4 0.555 3
DivRes 5 0.773 1

4.4. Sensitivities: Ranking for different policy preferences

Although the analysis in the previous section reveals a clear preference in favor of the
renewable diversification scenario (DivRes), one could argue that this outcome is distorted by
the criteria weight selection, which features a certain bias of the stakeholders in favor of
ecological and social criteria; thus, it may have put the renewable scenario in an overly
optimistic light. What would be the outcome of the TOPSIS analysis if other policy
preferences, such as those described in Section 3.3 (Table 5), were used to determine the
weighting parameters? In order to answer this question, additional rankings for different

sensitivity cases are calculated.



Table 8. Ranking of the different sensitivity cases

Reference Sensitivity cases
. Holistic Technocratic Mercantilist Eco-social
Rank Expert voting
approach approach approach approach

1 DivRes DivRes DivCoalRes DivRes DivRes
2 BAU BAU DivRes DivCoalRes BAU
3 DivCoalRes DivCoalRes DivCoal BAU DivCoalRes
4 DivNuc DivNuc BAU DivCoal DivNuc
5 DivCoal DivCoal DivNuc DivNuc DivCoal

The results in Table 8 demonstrate a relatively high robustness, at least with regards to the
first rank: except for the ‘technocratic’ approach, which prioritizes the coal-RES
diversification scenario (DivCoalRes) because of its favorable supply security and energy
independency attributes, all other sensitivity cases exhibit a clear preference for the renewable
diversification scenario (DivRes). Regarding the second and third rank, both are
predominantly occupied by the business as usual (BAU) and the coal-renewable
diversification scenario (DivCoalRes). The two last ranks are shared between the DivCoal and

the DivNuc scenario.

In summary, the overall analysis framework indicates that the renewable diversification
scenario (DivRes) represents a favorable strategy for the majority of all possible decision-
making environments. The DivRes scenario is followed by the business-as-usual (BAU)
baseline case and the combined diversification scenario with coal and renewable energies
(DivCoalRes). The nuclear power and the exclusively coal-based diversification (DivCoal)
scenarios appear to be the least advantageous strategies for the transformation of the Tunisian

electricity system until 2030.

5. Conclusion

The methodology presented in this article aims to support the complex decision making
process that is currently ongoing concerning Tunisia’s future energy strategies. After the
Tunisian revolution in 2011, the country is standing not only at a crossroad in the political
sense but also in terms of energy supply; thus, important decisions need to be made.
Regarding the electricity sector, prime concerns are the dependency on natural gas, cost

aspects, and the social aspects of future electricity supply schemes, in particular with regard to



job creation. Environmental sustainability issues are also increasingly promoted by Tunisia’s

civil society.

In this study, we subjected five different electricity system transformation scenarios to a two-
stage analysis method which consisted of a cost-minimizing electricity market model used in
conjunction with a multi-criteria analysis. In order to address the multiple aspects of the
decision making context in Tunisia, it was necessary to establish a mapping of the Tunisian
stakeholder preferences prior to the analysis. This was carried out within a participative
stakeholder process, organized by the Tunisian energy conservation agency ANME during
expert consultations about a new national renewable energy roadmap: the Tunisian Solar
Plan. The criteria preferences (obtained by expert voting) served as weighting parameters for
the above-mentioned multi-criteria analysis, and allowed us to establish an indicative ranking
of the scenarios. The scenario providing the maximum utility for the examined group of
stakeholders was the ‘“Renewable Diversification Scenario,” targeting a renewable

contribution of 30% in the overall power generation mix in 2030.

As our multi-criteria analysis rests on criteria valuations of a relatively limited set of experts,
there remain uncertainties as to whether the obtained ranking result really mirrors the
intentions of the Tunisian society as a whole. In a sensitivity analysis, we calculated
hypothetical cases where the criteria preferences are very asymmetrically biased toward
mercantilist, eco-social and technocratic criteria. The results show a relatively high robustness
of the ranking, placing the renewable diversification scenario in a superior position for most
of the analyzed alternative decision environments. One exception is the “technocratic”
decision environment, where the coal-renewable diversification (DivCoalRes) is preferred to
the renewable diversification (DivRes). Interestingly, the MCDA study of Ribeiro et al.
(2012) about the Portuguese power system comes to a similar result: here, the “maximum
renewable scenario” is challenged by an equally high-ranking “coal scenario”. The studies
featuring Finland (Hayha et al., 2011) and Greece (Diakulaki and Karagelis, 2007), however,
both exhibit a clear preference of the RES-E scenarios compared to other alternatives of the
multi-criteria decision framework. In the Spanish study (Del Riego et al., 2012), where a
system development model is combined with a dynamic TOPSIS-based decision making tool,
renewable technologies also clearly increase their weight in electricity generation. Our results,
together with the above-mentioned findings from similar studies in other countries, should be
seen a strong indicator that renewable energy mix visions actually merit a stronger

consideration in the discussions about future Tunisian energy policies.



To conclude, it must be noted that our analysis has the drawback of being a purely national
approach. The effects of integrating the Tunisian electricity system into a larger regional or
even trans-Mediterranean electricity supply scheme were not within the scope of this study.
Additional investigations are desirable with this respect, e.g. to assess the effects of a stronger
embedding of the Tunisian power system in an international electricity supply scheme with
more cross-border power trade (imports and exports of electricity). In this case, interactions of
the different national policy strategies also need to be taken into account, e.g. between the
Tunisian energy roadmap and those of its neighboring countries Algeria and Libya. Further
work is also required to assess the impact of common trans-Mediterranean power system
roadmaps, like Desertec (Dii, 2013) or the Mediterranean Solar Plan of the Union for the

Mediterranean (UfM, 2013) on the sustainability of the electricity generation mix in Tunisia.
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