Volltext-Downloads (blau) und Frontdoor-Views (grau)

Alloy and process design of forging steels for better environmental performance

  • In material development processes, the question if a new alloy is more sustainable than the existing one becomes increasingly significant. Existing studies on metals and alloys show that their composition can make a difference regarding the environmental impact. In this case study, a recently developed air hardening forging steel is used to produce a U-bolt as an example component in automotive engineering. The production process is analyzed regarding the environmental performance and compared with the standard quench and tempering steels 42CrMo4 and 33MnCrB5-2. The analysis is based on results from applying the method of Life Cycle Assessment. First, the production process and the alterations on material, product, and process level areIn material development processes, the question if a new alloy is more sustainable than the existing one becomes increasingly significant. Existing studies on metals and alloys show that their composition can make a difference regarding the environmental impact. In this case study, a recently developed air hardening forging steel is used to produce a U-bolt as an example component in automotive engineering. The production process is analyzed regarding the environmental performance and compared with the standard quench and tempering steels 42CrMo4 and 33MnCrB5-2. The analysis is based on results from applying the method of Life Cycle Assessment. First, the production process and the alterations on material, product, and process level are defined. The resulting process flows were quantified and attributed with the environmental impacts covering Carbon Footprint, Cumulative Energy Demand, and Material Footprint as they represent best the resource-, energy- and thus carbon-intensive steel industry. The results show that the development of the air hardening forging steel leads to a higher environmental impact compared to the reference alloys when the material level is considered. Otherwise, the new steel allows changes in manufacturing process, which is why an additional assessment on process level was conducted. It is seen that the air hardening forging steel has environmental savings as it enables skipping a heat treatment process. Superior material characteristics enable the application of lightweight design principles, which further increases the potential environmental savings. The present work shows that the question of the environmental impact does not end with analyzing the raw material only. Rather, the entire manufacturing process of a product must be considered. The case study also shows methodological questions regarding the specification of steel for alloying elements, processes in the metalworking industry and the data availability and quality in Life Cycle Assessment.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    

Statistics

frontdoor_oas
Metadaten
Document Type:Peer-Reviewed Article
Author:Wiebke Hagedorn, Alexander Gramlich, Kathrin Greiff, Ulrich Krupp
URN (citable link):https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-80673
DOI (citable link):https://doi.org/10.1016/j.susmat.2022.e00509
Year of Publication:2022
Language:English
Source Title (English):Sustainable materials and technologies
Volume:34
Article Number:e00509
Divisions:Nachhaltiges Produzieren und Konsumieren
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
OpenAIRE:OpenAIRE
Licence:License LogoCreative Commons - CC BY - Namensnennung 4.0 International