Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 87 of 1619
Back to Result List

Life-cycle assessment of Brazilian transport biofuel and electrification pathways

  • Biofuels and electrification are potential ways to reduce CO2 emissions from the transport sector, although not without limitations or associated problems. This paper describes a life-cycle analysis (LCA) of the Brazilian urban passenger transport system. The LCA considers various scenarios of a wholesale conversion of car and urban bus fleets to 100% electric or biofuel (bioethanol and biodiesel) use by 2050 compared to a business as usual (BAU) scenario. The LCA includes the following phases of vehicles and their life: fuel use and manufacturing (including electricity generation and land-use emissions), vehicle and battery manufacturing and end of life. The results are presented in terms of CO2, nitrous oxides (NOx) and particulate matterBiofuels and electrification are potential ways to reduce CO2 emissions from the transport sector, although not without limitations or associated problems. This paper describes a life-cycle analysis (LCA) of the Brazilian urban passenger transport system. The LCA considers various scenarios of a wholesale conversion of car and urban bus fleets to 100% electric or biofuel (bioethanol and biodiesel) use by 2050 compared to a business as usual (BAU) scenario. The LCA includes the following phases of vehicles and their life: fuel use and manufacturing (including electricity generation and land-use emissions), vehicle and battery manufacturing and end of life. The results are presented in terms of CO2, nitrous oxides (NOx) and particulate matter (PM) emissions, electricity consumption and the land required to grow the requisite biofuel feedstocks. Biofuels result in similar or higher CO2 and air pollutant emissions than BAU, while electrification resulted in significantly lower emissions of all types. Possible limitations found include the amount of electricity consumed by electric vehicles in the electrification scenarios.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar    

Statistics

frontdoor_oas
Metadaten
Document Type:Peer-Reviewed Article
Author:Kain Glensor, Maria Rose Munoz Barriga
URN (citable link):https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-75651
DOI (citable link):https://doi.org/10.3390/su11226332
Year of Publication:2019
Language:English
Source Title (English):Sustainability
Volume:11
Issue:22
Article Number:6332
Divisions:Energie-, Verkehrs- und Klimapolitik
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
OpenAIRE:OpenAIRE
Licence:License LogoCreative Commons - CC BY - Namensnennung 4.0 International