Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 11 of 26
Back to Result List

Exploring the macro-scale CO2 mitigation potential of photovoltaics and wind energy in Europe's energy transition

  • Replacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO2 emissions related to theReplacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO2 emissions related to the construction and deployment of the next generation of panels. Considering the varied energy mixes and penetration rates of renewable energies in different areas, several countries can experience similar time gaps between the installation of the first renewable power plants and the moment in which the emissions from their infrastructure are offset. The analysis demonstrates that the time-profile of renewable energy emissions can be relevant for target-setting and detailed policy design, particularly when renewable energy strategies are pursued in concert with carbon pricing through cap-and-trade systems.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar    

Statistics

frontdoor_oas
Metadaten
Document Type:Peer-Reviewed Article
Author:Arkaitz Usubiaga, José Acosta Fernandez, Will McDowall, Francis G.N. Li
URN (citable link):https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-66130
DOI (citable link):https://doi.org/10.1016/j.enpol.2017.01.056
Year of Publication:2017
Language:English
Source Title (English):Energy policy
Volume:104
First Page:203
Last Page:213
Divisions:Zukünftige Energie- und Industriesysteme
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
OpenAIRE:OpenAIRE
Licence:License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung