Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 14 of 34
Back to Result List

Re-industrialisation and low-carbon economy - can they go together? : Results from stakeholder-based scenarios for energy-intensive industries in the German state of North Rhine Westphalia

  • The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability ofThe German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of "re-industrialisation" for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry - such as electrification, hydrogen-based processes for steel, alternative cements or CCS - if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar    

Statistics

frontdoor_oas
Metadaten
Document Type:Peer-Reviewed Article
Author:Stefan LechtenböhmerORCiDGND, Clemens Schneider, Maria Yetano Roche, Samuel Höller
URN (citable link):https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-62008
DOI (citable link):https://doi.org/10.3390/en81011404
Year of Publication:2015
Language:English
Source Title (English):Energies
Volume:8
Issue:10
First Page:11404
Last Page:11429
Divisions:Zukünftige Energie- und Industriesysteme
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
OpenAIRE:OpenAIRE
Licence:License LogoCreative Commons - Namensnennung