Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 1
Back to Result List

Exploring the potential role of carbon capture and storage (CCS) for power plants in the German and the international context : a multi-dimensional assessment approach

  • In the Paris Accord to the UN Climate Change Conference COP21 in 2015, the international community agreed to "make every effort" to reach a significant reduction in greenhouse gas (GHG) emissions and to limit global average temperature rise to preferably 1.5°C by 2100 (UNFCC 2018). A transition to a climate-friendly energy supply, however, would come largely at the expense of coal - a fossil fuel with large global reserves that are also widely dispersed regionally. Therefore, especially since the turn of the millennium, the question has been raised as to how coal could be used in a climate-friendly way in the future. So far, the only way to do this is to apply CCS technology or CCU. CCS involves the capture of carbon dioxide (CO2) emissionsIn the Paris Accord to the UN Climate Change Conference COP21 in 2015, the international community agreed to "make every effort" to reach a significant reduction in greenhouse gas (GHG) emissions and to limit global average temperature rise to preferably 1.5°C by 2100 (UNFCC 2018). A transition to a climate-friendly energy supply, however, would come largely at the expense of coal - a fossil fuel with large global reserves that are also widely dispersed regionally. Therefore, especially since the turn of the millennium, the question has been raised as to how coal could be used in a climate-friendly way in the future. So far, the only way to do this is to apply CCS technology or CCU. CCS involves the capture of carbon dioxide (CO2) emissions from fossil fuel-fired power plants or industrial sources and its storage underground, such as in deep saline aquifers or in depleted oil and natural gas fields, or their use for enhanced oil or gas recovery (EOR/EGR). When carbon capture and utilisation (CCU) is applied, the CO2 is further used, for example as feedstock for the production of durable plastics. Due to the relatively low potential of CCU compared to CCS (IPCC 2005), only CCS is considered in this thesis. The majority of studies and roadmaps have discussed CCS as a technology option that could make a significant contribution to achieving the objective of decreasing GHG emissions for many years (IPCC 2014a, 2018). Particularly in the power sector, however, these expectations have not yet been met. As of November 2019, worldwide only two small base-load power plants, capturing a total of 2.4 Mt CO2/year and mainly using it for EOR, are in operation, together with a few pilots in industrial applications and, in particular, natural gas processing (in total 30 Mt CO2/year) (Global CCS Institute 2019). Early on, it became clear that the predicted high deployment targets and their underlying studies should be critically questioned for various reasons. Particularly due to the lack of a systems-analytical evaluation of this technology (which was relatively new at the time), no reliable answers could be given about the ecological, economic, social and structural effects of its large-scale application. Such analyses are, however, a pre-condition for comprehensively classifying the contribution of a new technology as a promising option for a sustainable energy supply system and assessing it in comparison to other technologies. To address these challenges, several studies, most of which initiated by the author, were conducted on this topic between 2004 and 2018. The resulting papers became the basis for this thesis.show moreshow less

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    

Statistics

frontdoor_oas
Metadaten
Document Type:Habilitation
Author:Peter ViebahnORCiDGND
University:Universität
City of university:Osnabrück
Year of Publication:2021
Number of page:51
Language:English
External link:https://nbn-resolving.org/urn:nbn:de:gbv:700-202103114093
Divisions:Zukünftige Energie- und Industriesysteme
Dewey Decimal Classification:620 Ingenieurwissenschaften und Maschinenbau