Volltext-Downloads (blau) und Frontdoor-Views (grau)

Life cycle assessment of greenhouse gas mitigation of production and use of bio-methane : sensitivity of effects from N2O emissions

  • Biogas and bio-methane that are based on energy crops are renewable energy carriers and therefore potentially contribute to climate protection. However, significant greenhouse gas (GHG) emissions resulting from agricultural production processes must be considered. Among those, the production and use of fertilizer, and the resulting leaching of nitrous oxide (N2O), are crucial factors. This article provides an integrated life cycle assessment (LCA) of biogas (i.e. bio-methane that has been upgraded and injected into the natural gas grid), taking into account the processes of fermentation, upgrading and injection to the grid for two different types of biogas plants. The analysis is based on different feedstocks from crop rotation systems forBiogas and bio-methane that are based on energy crops are renewable energy carriers and therefore potentially contribute to climate protection. However, significant greenhouse gas (GHG) emissions resulting from agricultural production processes must be considered. Among those, the production and use of fertilizer, and the resulting leaching of nitrous oxide (N2O), are crucial factors. This article provides an integrated life cycle assessment (LCA) of biogas (i.e. bio-methane that has been upgraded and injected into the natural gas grid), taking into account the processes of fermentation, upgrading and injection to the grid for two different types of biogas plants. The analysis is based on different feedstocks from crop rotation systems for different locations in Germany. A special focus is on the sensitivity of assumptions of nitrous oxide emissions to overall GHG emissions. Much research exists on the measurement or modeling of the actual N2O emissions that result from farming processes. Since there is as yet no precise regional data, most analyses use tier-1 data from the IPCC national GHG inventories as a default. The present article coincides with recent research in indicating that this data varies at the regional level. However, it is not the scope of the article to evaluate the quality of existing data for N2O emissions, but to show the effects of different assumptions on the LCA of GHGs from bio-methane. Thus, a link between the provision of emission data and the practical implementation of biogas technology is provided. The main result is that the supply chain of substrates from agricultural processes appears to contribute the most to the GHG emissions of bio-methane. The "worst case" scenario where 5% of the nitrogen fertilizer used is emitted in form of N2O shows that the GHG mitigation potential of bio-methane versus natural gas is very small, so there is not much margin for error in the plant technology.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter    Search Google Scholar    frontdoor_oas
Metadaten
Document Type:Peer-Reviewed Article
Author:Karin Arnold
URN (citable link):https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-37078
Year of Publication:2010
Language:English
Source Title (English):Journal of integrative environmental sciences
DOI:https://doi.org/10.1080/19438151003774448
Volume:7
Issue:Suppl. 1
First Page:257
Last Page:267
Release Date:2011/11/04
Division:Zukünftige Energie- und Mobilitätsstrukturen
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
Licence:License LogoIn Copyright - Urheberrechtlich geschützt