Refine
Year of Publication
Document Type
- Conference Object (92) (remove)
Language
- English (92) (remove)
Division
- Zukünftige Energie- und Industriesysteme (92) (remove)
The EU aims to become the first climate neutral continent. To achieve this goal, the industry sector needs to reduce its GHG emissions to net zero or at least close to net zero. This is a particularly challenging task due to the high energy demand especially of primary materials production and the little potential to reduce this energy intensity when switching to other production processes based on electricity or hydrogen. In order to identify robust strategies for achieving a net-zero-compatible industry sector, the paper at hand analyses the transformation of the industry sector as described by a number of recent climate neutrality scenarios for Germany. Apart from overall industry, a focus is set on the sectors of steel, chemicals and cement. The analysed scenarios show very deep GHG emission reductions in industry and they appear to be techno-economically feasible by the mid of the century, without relying on offsets or on shifts from domestic production to imports. The scenarios agree on a suite of core strategies to achieve this, such as direct and indirect electrification, energy efficiency and recycling as well as new technological routes in steel making and cement. The scenarios differ, however, regarding the future mix of electricity, hydrogen and biomass and regarding the future relevance of domestic production of basic chemicals.
The unprecedented challenge of reaching carbon neutrality before mid-century and a large share of it within 2030 in order to keep under the 1.5 or 2 °C carbon budgets, requires broad and deep changes in production and consumption patterns which, together with a shift to renewables and reinforced efficiency, need to be addressed through energy sufficiency. However, inadequate representations and obstacles to characterising and identifying sufficiency potentials often lead to an underrepresentation of sufficiency in models, scenarios and policies.
One way to tackle this issue is to work on the development of sufficiency assumptions at a concrete level where various implications such as social consequences, environmental co-benefits, conditions for implementation can be discussed. This approach has been developed as the backbone of a collaborative project, gathering partners in 20 European countries at present, aiming for the integration of harmonised national scenarios into an ambitious net-zero European vision.
The approach combines a qualitative discussion on the role of energy sufficiency in a "systemic" merit order for global sustainability, and a quantitative discussion of the level of sufficiency to be set to contribute to meeting 100 % renewables supply and net-zero emissions goals by 2050 at the latest. The latter is based on the use of a dashboard, which serves as a common descriptive framework for all national scenario trajectories and their comparison, with a view to harmonising and strengthening them through an iterative process.
A set of key sufficiency-related indicators have been selected to be included in the dashboard, while various interrelated infrastructural, economic, environmental, social or legal factors or drivers have been identified and mapped. This paves the way for strengthening assumptions through the elaboration of "sufficiency corridors" defining a convergent, acceptable and sustainable level of energy services in Europe. The process will eventually inform the potential for sufficiency policies through a better identification of leverages, impacts and co-benefits.
On the pathway to climate neutrality, EU member states are obliged to submit national energy and climate plans (NECPs) with planned policies and measures for decarbonization until 2030 and long-term strategies (LTSs) for further decarbonization until 2050. We analysed the 27 NECPs and 15 LTSs submitted by October 2020 using an interrater method. This paper focuses on energy sufficiency policies and measures in the transport sector.
We found a total of 236 sufficiency policy measures with more than half of them (53 %) in the transport/mobility sector. Additionally, we found 41 measures that address two or more sectors (cross-sectoral measures). From the explicit sufficiency measures within the transport sector, 82 % aim at modal shift. A reduction of transport volumes is much less addressed. Countries plan to use mainly fiscal and economic instruments. Those are in many cases investments in infrastructure of low-carbon transport modes and taxation instruments. Plans on decarbonisation measures are also frequently mentioned. The majority of cross-sectoral measures are carbon taxes or tax reforms, also economic instruments.
On the one hand it is encouraging that Member States strongly emphasize the transport sector in their NECPs and LTSs - at least quantitatively and concerning sufficiency measures - because this sector has been the worst-performing in climate mitigation so far. On the other hand, the measures described seem not sufficient to reach ambitious climate targets, and we doubt that the presented set of policy instruments will get the transport sector on track to mitigate greenhouse gas emissions in the necessary extent.
For some time, 3D printing has been a major buzzword of innovation in industrial production. It was considered a game changer concerning the way industrial goods are produced. There were early expectations that it might reduce the material, energy and transport intensity of value chains. However for quite a while, the main real world applications of additive manufacturing (AM) have been some rapid prototyping and the home-based production of toys made from plastics. On this limited basis, any hypotheses regarding likely impacts on industrial energy efficiency appeared to be premature. Notwithstanding the stark contrast between early hype and practical use, the diffusion of AM has evolved to an extent that at least for some applications allows for a preliminary assessment of its likely implications for energy efficiency.
Unlike many cross-cutting energy efficiency technologies, energy use of AM may vary substantially depending on industry considered and material used for processing. Moreover, AM may have much greater repercussions on other stages of value chains than conventional cross-cutting energy efficiency technologies. In case of AM with metals the following potential determinants of energy efficiency come to mind:
- A reduction of material required per unit of product and used during processing;
- Changes in the total number and spatial allocation of certain stages of the value chain; and
- End-use energy efficiency of final products.
At the same time, these various streams of impact on energy efficiency may be important drivers for the diffusion of AM with metals. This contribution takes stock of AM with metals concerning applications and processes used as well as early evidence on impacts on energy efficiency and combine this into a systematic overview. It builds on relevant literature and a case study on Wire Arc Additive Manufacturing performed within the REINVENT project.
The reduction of greenhouse gas (GHG) emissions by energyintensive industries to a net zero level is a very ambitious and complex but still feasible challenge, as recent studies show for the EU level. "Industrial Transformation 2050" by Material Economics (2019) is of particular relevance, as it shows how GHG-neutrality can be achieved in Europe for the sectors chemicals (plastics and ammonia), steel and cement, based on three main decarbonisation strategies. The study determines the resulting total demands for renewable electricity, hydrogen and for the capture and storage of CO2 (CCS). However, it analyses neither the regional demand patterns that are essential for the required infrastructure nor the needed infrastructure itself.
Against this background the present paper determines the regional distribution of the resulting additional demands for electricity, hydrogen and CCS in Europe in the case that the two most energy and CCS intensive decarbonisation strategies of the study above will be realised for the existing industry structure. It explores the future infrastructure needs and identifies and qualitatively assesses different infrastructure solutions for the largest industrial cluster in Europe, i.e. the triangle between Antwerp, Rotterdam and Rhine-Ruhr. In addition, the two industrial regions of Southern France and Poland are also roughly examined.
The paper shows that the increase in demand resulting from a green transformation of industry will require substantial adaptation and expansion of existing infrastructures. These have not yet been the subject of infrastructure planning. In particular, the strong regional concentration of additional industrial demand in clusters (hot spots) must be taken into account. Due to their distance from the high-yield but remote renewable power generation potentials (sweet spots), these clusters further increase the infrastructural challenges. This is also true for the more dispersed cement production sites in relation to the remote CO2 storage facilities. The existing infrastructure plans should therefore be immediately expanded to include decarbonisation strategies of the industrial sector.
Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation.
Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects.
The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs.
For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
The paper describes quantitative scenarios on a possible evolution of the EU petrochemical industry towards climate neutrality. This industry will be one of the remaining sectors in a climate neutral economy still handling hydrocarbon material to manufacture polymers. Concepts of a climate neutral chemical industry stress the need to consider the potential end-of-life emissions of polymers produced from fossil feedstock and draft the vision of using renewable electricity to produce hydrogen and to use renewable (hydro)carbon feedstock. The latter could be biomass, CO2 from the air or recycled feedstock from plastic waste streams.
The cost-optimization model used to develop the scenarios describes at which sites investments of industry in the production stock could take place in the future. Around 50 types of products, the related production processes and the respective sites have been collected in a database. The processes included cover the production chain from platform chemicals via intermediates to polymers. Pipelines allowing for efficient exchange of feedstock and platform chemicals between sites are taken into account as well. The model draws on this data to simulate capacity change at individual plants as well as plant utilization. Thus, a future European production network for petrochemicals with flows between the different sites and steps of the value chain can be sketched.
The scenarios described in this paper reveal how an electrification strategy could be implemented by European industry over time with minimized societal costs. Today's existing assets as well as geographical variance of energy supply and the development of demand for different plastic sorts are the major model drivers.
Finally, implications for the chemical industry, the energy system and national or regional governments are discussed.
This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios.
The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies.
The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated.
The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.