Refine
Year of Publication
Document Type
- Conference Object (130) (remove)
Division
- Zukünftige Energie- und Industriesysteme (130) (remove)
The unprecedented challenge of reaching carbon neutrality before mid-century and a large share of it within 2030 in order to keep under the 1.5 or 2 °C carbon budgets, requires broad and deep changes in production and consumption patterns which, together with a shift to renewables and reinforced efficiency, need to be addressed through energy sufficiency. However, inadequate representations and obstacles to characterising and identifying sufficiency potentials often lead to an underrepresentation of sufficiency in models, scenarios and policies.
One way to tackle this issue is to work on the development of sufficiency assumptions at a concrete level where various implications such as social consequences, environmental co-benefits, conditions for implementation can be discussed. This approach has been developed as the backbone of a collaborative project, gathering partners in 20 European countries at present, aiming for the integration of harmonised national scenarios into an ambitious net-zero European vision.
The approach combines a qualitative discussion on the role of energy sufficiency in a "systemic" merit order for global sustainability, and a quantitative discussion of the level of sufficiency to be set to contribute to meeting 100 % renewables supply and net-zero emissions goals by 2050 at the latest. The latter is based on the use of a dashboard, which serves as a common descriptive framework for all national scenario trajectories and their comparison, with a view to harmonising and strengthening them through an iterative process.
A set of key sufficiency-related indicators have been selected to be included in the dashboard, while various interrelated infrastructural, economic, environmental, social or legal factors or drivers have been identified and mapped. This paves the way for strengthening assumptions through the elaboration of "sufficiency corridors" defining a convergent, acceptable and sustainable level of energy services in Europe. The process will eventually inform the potential for sufficiency policies through a better identification of leverages, impacts and co-benefits.
On the pathway to climate neutrality, EU member states are obliged to submit national energy and climate plans (NECPs) with planned policies and measures for decarbonization until 2030 and long-term strategies (LTSs) for further decarbonization until 2050. We analysed the 27 NECPs and 15 LTSs submitted by October 2020 using an interrater method. This paper focuses on energy sufficiency policies and measures in the transport sector.
We found a total of 236 sufficiency policy measures with more than half of them (53 %) in the transport/mobility sector. Additionally, we found 41 measures that address two or more sectors (cross-sectoral measures). From the explicit sufficiency measures within the transport sector, 82 % aim at modal shift. A reduction of transport volumes is much less addressed. Countries plan to use mainly fiscal and economic instruments. Those are in many cases investments in infrastructure of low-carbon transport modes and taxation instruments. Plans on decarbonisation measures are also frequently mentioned. The majority of cross-sectoral measures are carbon taxes or tax reforms, also economic instruments.
On the one hand it is encouraging that Member States strongly emphasize the transport sector in their NECPs and LTSs - at least quantitatively and concerning sufficiency measures - because this sector has been the worst-performing in climate mitigation so far. On the other hand, the measures described seem not sufficient to reach ambitious climate targets, and we doubt that the presented set of policy instruments will get the transport sector on track to mitigate greenhouse gas emissions in the necessary extent.
Mit dem European Green Deal hat Europa seine Klimaschutzziele nach oben korrigiert und einen weiteren, erforderlichen Schritt auf dem Weg zur Dekarbonisierung unternommen. Die neuen europäischen Zielvorgaben sind in Deutschland mit der Verabschiedung des Klimaschutzgesetzes seit Ende 2019 schon verbindlich festgeschrieben, wobei hier bereits spezifische CO2-Budgets für die Einzelsektoren definiert werden. Die Umsetzung dieser Ziele verlangt eine radikale Transformation des heutigen Energieversorgungssystems.
Der Umbau des komplexen und heterogenen Wärmebereiches stellt dabei eine der größten Herausforderung dar: Wärme ist in Europa für über 50 % des Endenergieverbrauches verantwortlich, wird aber gegenwärtig nur zu 22 % aus erneuerbaren Quellen bereitgestellt. Aus geoklimatischen, kulturellen und politischen Gründen sind dabei die Anteile in den einzelnen europäischen Ländern sehr unterschiedlich. Unter den Spitzenreitern sind Schweden (66 %) und Dänemark (48 %). Unser Nachbarland Österreich erreicht immerhin 34 %. Im Vergleich dazu liegt Deutschland mit 15 % abgeschlagen auf einem hinteren Platz.
Der verstärkte Einsatz erneuerbarer Energien ist neben der Steigerung der Energieeffizienz die tragende Säule der Wärmewende, wobei hier ein breiter Mix an Technologien gefragt ist.
Die direkte Nutzung der Wärmetechnologien hat weiterhin Priorität, erfordert aber eine stark beschleunigte Erschließung der vorhandenen Potenziale sowie einen nachhaltigen Umgang mit wertvoller Biomasse.
Die Sektorenkopplung bietet die notwendige Ergänzung für die geplante Transformation (BMWi, 2021). Solarenergie in Form von Solarwärme und Solarstrom wird somit in Kombination mit Umweltwärme eine zentrale Rolle im zukünftigen Wärme- und Kälteversorgungssystem spielen. Darauf fokussiert sich der Beitrag, wobei die spezifische Situation der Niedertemperatur-Solarthermie und der Schlüsseltechnologie Wärmepumpe adressiert werden.
For some time, 3D printing has been a major buzzword of innovation in industrial production. It was considered a game changer concerning the way industrial goods are produced. There were early expectations that it might reduce the material, energy and transport intensity of value chains. However for quite a while, the main real world applications of additive manufacturing (AM) have been some rapid prototyping and the home-based production of toys made from plastics. On this limited basis, any hypotheses regarding likely impacts on industrial energy efficiency appeared to be premature. Notwithstanding the stark contrast between early hype and practical use, the diffusion of AM has evolved to an extent that at least for some applications allows for a preliminary assessment of its likely implications for energy efficiency.
Unlike many cross-cutting energy efficiency technologies, energy use of AM may vary substantially depending on industry considered and material used for processing. Moreover, AM may have much greater repercussions on other stages of value chains than conventional cross-cutting energy efficiency technologies. In case of AM with metals the following potential determinants of energy efficiency come to mind:
- A reduction of material required per unit of product and used during processing;
- Changes in the total number and spatial allocation of certain stages of the value chain; and
- End-use energy efficiency of final products.
At the same time, these various streams of impact on energy efficiency may be important drivers for the diffusion of AM with metals. This contribution takes stock of AM with metals concerning applications and processes used as well as early evidence on impacts on energy efficiency and combine this into a systematic overview. It builds on relevant literature and a case study on Wire Arc Additive Manufacturing performed within the REINVENT project.
The reduction of greenhouse gas (GHG) emissions by energyintensive industries to a net zero level is a very ambitious and complex but still feasible challenge, as recent studies show for the EU level. "Industrial Transformation 2050" by Material Economics (2019) is of particular relevance, as it shows how GHG-neutrality can be achieved in Europe for the sectors chemicals (plastics and ammonia), steel and cement, based on three main decarbonisation strategies. The study determines the resulting total demands for renewable electricity, hydrogen and for the capture and storage of CO2 (CCS). However, it analyses neither the regional demand patterns that are essential for the required infrastructure nor the needed infrastructure itself.
Against this background the present paper determines the regional distribution of the resulting additional demands for electricity, hydrogen and CCS in Europe in the case that the two most energy and CCS intensive decarbonisation strategies of the study above will be realised for the existing industry structure. It explores the future infrastructure needs and identifies and qualitatively assesses different infrastructure solutions for the largest industrial cluster in Europe, i.e. the triangle between Antwerp, Rotterdam and Rhine-Ruhr. In addition, the two industrial regions of Southern France and Poland are also roughly examined.
The paper shows that the increase in demand resulting from a green transformation of industry will require substantial adaptation and expansion of existing infrastructures. These have not yet been the subject of infrastructure planning. In particular, the strong regional concentration of additional industrial demand in clusters (hot spots) must be taken into account. Due to their distance from the high-yield but remote renewable power generation potentials (sweet spots), these clusters further increase the infrastructural challenges. This is also true for the more dispersed cement production sites in relation to the remote CO2 storage facilities. The existing infrastructure plans should therefore be immediately expanded to include decarbonisation strategies of the industrial sector.
Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation.
Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects.
The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs.
For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
The paper describes quantitative scenarios on a possible evolution of the EU petrochemical industry towards climate neutrality. This industry will be one of the remaining sectors in a climate neutral economy still handling hydrocarbon material to manufacture polymers. Concepts of a climate neutral chemical industry stress the need to consider the potential end-of-life emissions of polymers produced from fossil feedstock and draft the vision of using renewable electricity to produce hydrogen and to use renewable (hydro)carbon feedstock. The latter could be biomass, CO2 from the air or recycled feedstock from plastic waste streams.
The cost-optimization model used to develop the scenarios describes at which sites investments of industry in the production stock could take place in the future. Around 50 types of products, the related production processes and the respective sites have been collected in a database. The processes included cover the production chain from platform chemicals via intermediates to polymers. Pipelines allowing for efficient exchange of feedstock and platform chemicals between sites are taken into account as well. The model draws on this data to simulate capacity change at individual plants as well as plant utilization. Thus, a future European production network for petrochemicals with flows between the different sites and steps of the value chain can be sketched.
The scenarios described in this paper reveal how an electrification strategy could be implemented by European industry over time with minimized societal costs. Today's existing assets as well as geographical variance of energy supply and the development of demand for different plastic sorts are the major model drivers.
Finally, implications for the chemical industry, the energy system and national or regional governments are discussed.
This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios.
The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies.
The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated.
The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
Das Ziel der Energiewende - ein sicheres, umweltverträgliches und ökonomisch erfolgreiches Energiesystem - birgt diverse Herausforderungen. Diese umfassen die Erreichung der Klimaneutralität, den Umstieg auf erneuerbare Energieträger in allen Sektoren (inkl. Schwerlast- und Flugverkehr sowie industrielle Prozesswärme) als auch deren gegenseitige Integration. Bioenergie kann hierzu einen multiplen Beitrag leisten, sowie negative Emissionen bereitstellen und darüber hinaus auch Beiträge jenseits des Energiesystems erbringen, wie Naturschutz, ländliche Entwicklung, oder die Bereitstellung von biogenem CO2 als Rohstoff für die chemische Industrie. Somit ist Bioenergie ein unverzichtbarer Bestandteil für die Lösung der Herausforderungen in der Transformation zu einem nachhaltigen Energiesystem.
Gegenwärtig stellt Bioenergie mit dem größten Anteil an erneuerbaren Energien im Primärenergieverbrauch (60 %) als auch im Endenergieverbrauch (53 %), mehr als alle anderen erneuerbaren Energieträger zusammen. Dabei bestehen Unterschiede zwischen den Endenergiesektoren: während Bioenergie in der Bruttostromerzeugung 24 % des erneuerbaren Stroms deckt, dominiert sie die erneuerbare Bereitstellung von Wärme mit 86 % als auch den erneuerbaren Endenergieverbrauch im Verkehrssektor mit 88 % in 2018. Aufgrund der Bedeutung von Bioenergie heute werden Beispiele vorgestellt, welche einen zukünftigen multipleren Systembeitrag von Bioenergie fokussieren.
Die Erkenntnisse der Klimaforschung sind eindeutig: Um das im Pariser Klimaabkommen vereinbarte Ziel der Begrenzung der Erderwärmung auf "deutlich unter 2 °C" noch einhalten zu können, müssen die globalen Treibhausgasemissionen umgehend ihren Scheitelpunkt erreichen und anschließend kontinuierlich und steil zurückgehen. Dies gilt umso mehr für die ebenfalls im Pariser Klimaabkommen vereinbarte Absicht, die Erwärmung möglichst sogar unter 1,5 °C zu halten. Durch eine entsprechende Begrenzung der Erderwärmung kann nach aktuellem Wissensstand die Gefahr des Auslösens gefährlicher Kipppunkte und einer sich selbst verstärkenden Erwärmung deutlich vermindert werden.
Der schnell fortschreitende Digitalisierungs- und Automatisierungsprozess ist heute schon ein wichtiger Wegbegleiter für die Transformation des aktuellen Energiesystems. Im vorliegenden Beitrag werden sechs Anwendungsbeispiele vorgestellt, die deutlich machen, dass die Energiewende ohne Digitalisierung nicht denkbar ist.
Die Digitalisierung ist längst gelebte Praxis. Jeden Tag werden Milliarden an "digitalen" Handlungen ausgeführt. Beispielsweise werden täglich 207 Mrd. E-Mails verschickt, 8,8 Mrd. YouTube-Videos angesehen und 36 Mio. Amazonkäufe getätigt. Dabei nimmt die Geschwindigkeit, mit der neue Anwendungen entwickelt und etabliert werden, kontinuierlich zu. Es stellt sich also die Frage, was im Energiesektor zu erwarten ist und wie die Entwicklung zielgerichtet genutzt werden kann.
Welche Rolle spielt die Digitalisierung mit der Vielzahl ihrer Methoden und Anwendungen für die Energiewende - also für die Transformation unseres Energiesystems im Sinne der vereinbarten Klimaschutzziele? Ist sie notwendige Voraussetzung für den Systemumbau und ermöglicht beispielsweise erst den Übergang auf ein nahezu vollständig erneuerbares Energiesystem (Enabler) oder ist sie lediglich ein nützliches, den Umbau beschleunigendes Hilfsmittel (Facilitator)? Welche Veränderungen sind durch die Ziele der Energiewende getrieben und welche durch die Verbreitung von Techniken der Digitalisierung? All dies waren Fragen, die im Rahmen der Jahrestagung 2018 des Forschungsverbunds Erneuerbare Energien unter dem Titel "Die Energiewende - smart und digital" behandelt wurden. Dieser einführende Beitrag versucht einige Anhaltspunkte zur Beantwortung dieser Fragen zu liefern und in das Thema einzuführen.
In recent years, many energy scenario studies have proven that a power supply system based on renewable energies (RE) >90 percent is feasible. However, existing scenarios differ significantly in the composition of generation technologies. Some scenarios focus on wind energy in the northern part of Europe, others base on a large utilisation of solar technologies in the south. Apart from the generation capacities, the needed technical flexibilisation strategies such as grid extension, demand flexibilisation and energy storage are generally known and considered in many scenarios. Yet, the impact of different renewable generation strategies on the local utilisation of flexibility options needs to be further assessed. Based upon the BMBF research project RESTORE2050, analyses have been carried out that focus on these interdependencies. The results of the project show that the local utilisation of flexibilisation options depends to a great extent on the technology focus of the long-term renewable expansion strategy. This applies for the spatial flexibilisation as provided by transnational interconnection capacities, especially the ones connecting regions with a surplus of power generation (e.g. GB, Norway and Spain). Another impact of the renewable scenario is seen on the required temporal flexibilisation of electricity generation and demand. In addition, the available options will compete for high utilisation in a future energy system. The differences in the utilisation of these applications, which base on the varying shares of photovoltaic (PV) and wind energy generation, lead to the conclusion that the decision about longterm RE expansion ought to be made very soon in order to avoid inefficient flexibility pathways. Otherwise, if the future RE structure will be kept open, adequate adoption of new flexibility options will be difficult, especially in case of technologies with long lead and realisation time (e.g. new power grids and large scale energy storage devices).
In dem Forschungsprojekt "Technologien für die Energiewende" (TF_Energiewende) bewertet ein Konsortium von drei Verbundpartnern und zehn Technologiepartnern unter der Federführung des Wuppertal Instituts seit Herbst 2016 den mittelfristigen Forschungs- und Entwicklungsbedarf für die zentralen Technologien, die im Rahmen der Energiewende derzeit und zukünftig benötigt werden.
Solarthermische Kraftwerke
(2018)
Der Schutz des Klimas und die dafür erforderliche Umstellung der Energieversorgung auf erneuerbare Energien ist eine globale Herausforderung, welche nach maßgeschneiderten Lösungen für die unterschiedlichen Klimazonen und Märkte der Erde verlangt. Die verstärkte Solarenergienutzung spielt dabei eine maßgebliche Rolle. Die Rolle Deutschlands als Exportnation beschränkt sich hierbei nicht auf die Klimawende im eigenen Land, sondern beinhaltet auch den weltweiten Export erneuerbarer Energietechnologien.
Die Kosten der photovoltaischen Stromerzeugung (PV) und der Windkraft sind in den vergangenen Jahren erfreulicherweise deutlich gesunken, entsprechend wurden in vielen Ländern große Kapazitäten zugebaut. Die resultierende stark gestiegene Einspeisung fluktuierender Erzeuger stellt Netzbetreiber vor neue Herausforderungen, insbesondere durch die extremen Lastschwankungen für plan- und steuerbare, heute größtenteils fossil befeuerte konventionelle Kraftwerke.
Hier bieten solarthermische Kraftwerke Lösungen.
There is an increasing pressure that enhanced and novel energy technologies are swiftly adopted by the market to ensure meeting the energy and climate targets. An important issue with such novel developments is their risk to be stuck in the "valley of death", i.e. that their transition to the market is delayed or unsuccessful. Publicly supported demonstration projects could help to bridge the valley of death by reducing barriers to the adoption caused by missing information and perceived risks. A challenge for technology demonstrations in the industrial context is their often high investments that are required to prove their real-world benefits. Given the magnitude of such investments, it becomes crucial that public funding focuses on the most promising demonstration proposals. Structured evaluation processes can help to facilitate the identification of promising proposals and to improve the quality and transparency of decisions. This paper deals with a corresponding multi-staged multi-criteria decision support system (DSS) suggested to the German Federal Ministry for Economic Affairs and Energy. It deals with the evaluation of demonstration proposals across three stages: The first stage represents a filtering stage to identify those proposals relevant for further considerations. The second stage comprises a multi-criteria scoring method drawing on an evaluation against nineteen criteria. The final third stage serves to critically review the need for public funding of well-scored proposals. This contribution outlines the development of the DSS and its design and thus provides insights on proposal evaluating in energy research.
Converting electricity into heat offers the opportunity to make of use large scales of renewable (surplus) energy in the long run in order to reduce shut-downs of renewable power plants and to substitute fossil fuels. Electrification seems to be also very promising for industrial heat applications, as it enables high process temperatures to be achieved in a tailor-made and efficient way and enables the utilisation of other energy sources like waste heat, geothermal or ambient heat (via heat pumps). This article analyses theoretical and technical electrification potentials of Steam Generation and Other Process Heat Generation in the following energy-intensive branches: iron & steel, non-ferrous metal, iron foundries, refineries, base chemicals, glass, cement clinker and paper industry in Germany. Literature research, expert interviews as well as own modelling were conducted to determine potentials and their implementation barriers. Based on these methods, market potential to electrify industrial steam generation was estimated. On the basis of two climate protection scenarios, the effects of both a monovalent and a hybrid industrial power-to-heat strategy were quantified with regard to greenhouse gas reduction and energy efficiency (primary energy saving). The pathway towards electrification will be reflected by criteria such as path dependency, dependency of infrastructure and system compatibility. Recommendations for research and development as well as policies are derived from the overall analysis. The article shows that electrification can be an important option to achieving high CO2-savings in the industrial heating sector in a long-term perspective. However, the scenario calculations show that electrification does not in itself guarantee reduction of greenhouse gases or savings of primary energy. To reach these goals, it is essential to further develop industrial heat pumps and to map electrification and further development of renewable energy (including infrastructure such as power networks and storage facilities) in a concerted strategy.
The German federal state of North Rhine-Westphalia (NRW) is home to important clusters of energy-intensive basic materials industries. 15% of the EU's primary steel as well as 15% of high-value base chemicals are produced here. Together with refinery fuels, cement, lime and paper production (also overrepresented in NRW) these are the most carbon-intensive production processes of the industrial metabolism. To achieve the ambitious regional and national climate goals without relocating these clusters, carbon-neutral production will have to become standard by mid-century. We develop and evaluate three conceptual long-term scenarios towards carbon-neutral industry systems for NRW for 2050 and beyond:
* a first scenario depending on carbon capture and storage or use for heavy industries (iCCS),
* a second scenario sketching the direct electrification of industrial processes (and transport) and
* a third scenario relying on the import of low carbon energies (e.g. biomass, and synthetic fuels (like methanol) for the use in industries and transport. All scenarios share the assumption that electricity generation will be CO2-neutral by 2050.
For all three scenarios energy efficiency, primary energy demand for energy services and feedstock as well as the carbon balance are quantified. We apply a spatial-explicit analysis of production sites to allow for discussion of infrastructure re-use and net investment needs. Possible symbiotic relations between sectors are also included. The robustness of the three conceptualised future carbon-neutral industry systems is then analysed using a multi-criteria approach, including e.g. energy security issues and lock-ins on the way to 2050.