Refine
Year of Publication
Document Type
- Conference Object (66) (remove)
Language
- German (66) (remove)
Der Klimawandel stellt uns vor die globale Herausforderung, auf fossile Energieträger zu verzichten. Die erfolgreiche Transformation des Energiesystems ist eine wesentliche Voraussetzung für eine vollständige Reduktion der Treibhausgase. Eine solche Transformation kann nur gelingen, wenn der fundamental neue Charakter des Systems erfasst und im abgeleiteten Rückschluss daraus der passende Pfad eingeschlagen wird. Im Kern lässt sich dieser neue Charakter als ein defossilisiertes, auf regenerativen Energien basierendes Energiesystem beschreiben.
Das Energiesystem der Zukunft wird stark durch Elektrifizierung geprägt sein. Für die Langzeitspeicherung von Energie sowie für Bereiche, die sich nicht sinnvoll durch Strom defossilieren lassen, werden aber auch in Zukunft chemische Energieträger benötigt. Das Ziel der Klimaneutralität bedingt, dass diese Energieträger vollständig emissionsfrei aus erneuerbaren Energien (EE) hergestellt werden. Diese grünen Energieträger sind transportier- und handelbar, sodass sich ein internationaler Markt für grünen Wasserstoff und seine Folgeprodukte entwickeln wird.
Derzeit gibt es diesen Markt noch nicht. Grüner Wasserstoff ist preislich noch nicht konkurrenzfähig gegenüber fossilen Brennstoffen. Den größten Anteil am Wasserstoffpreis haben die Kosten für die Elektrolyseanlage sowie die Kosten für die Strombereitstellung. Die besten Bedingungen für die Wasserstoffproduktion bieten daher EE-Standorte und Technologien mit hohen Volllaststundenzahlen, an denen auch der Elektrolyseur bei wenig EE-Abregelung auf viele Betriebsstunden kommt.
Die Bundesrepublik Deutschland hat sich zum Ziel gesetzt, bis 2045 klimaneutral zu werden. Das kann nur funktionieren, wenn fossile Rohstoffe durch erneuerbare Energien ersetzt werden - insbesondere in den Bereichen Industrie und Verkehr. Ein wesentlicher Baustein in diesem Transformationsprozess ist die Errichtung einer Wasserstoffwirtschaft, innerhalb derer Strom aus erneuerbaren Energien in grünen Wasserstoff umgewandelt und dieser als Energieträger vor allem in den Bereichen Industrie und Verkehr angewendet wird.
Die Forschung der FVEE-Institute zum Einsatz von klimaneutral erzeugtem Wasserstoff in der Industrie deckt sowohl technische Aspekte für einzelne Prozesse ab als auch systemanalytische Betrachtungen, die die Einsatzmöglichkeiten von Wasserstoff am einzelnen Standort oder für bestimmte Branchen in Deutschland bzw. Europa untersuchen.
Die Motivation zum Einsatz von Wasserstoff ergibt sich aus drei Gründen:
1. In der stofflichen Verwendung wird Wasserstoff als Molekül benötigt und kann deshalb auch nicht durch andere Energieträger substituiert werden. So wird Wasserstoff bereits heute in großen Mengen in der Ammoniaksynthese (Haber-Bosch-Verfahren) sowie in den Raffinerien benötigt.
2. Eine weitere Verwendungsart für Wasserstoff ergibt sich aus seiner Fähigkeit, Sauerstoff aus Eisenerz chemisch zu binden. Beim Einsatz in Direktreduktionsanlagen kann Wasserstoff als Reduktionsmittel eingesetzt werden, um Eisenerz zu Roheisen zu reduzieren.
3. Als dritte Option gerät die energetische Verwendung von Wasserstoff in der Industrie zunehmend in den Fokus der energiepolitischen Debatten. Hier steht Wasserstoff in einem klimaneutralen System direkt in Konkurrenz zu anderen Energieträgern wie Strom und Biomasse.
Mit dem European Green Deal hat Europa seine Klimaschutzziele nach oben korrigiert und einen weiteren, erforderlichen Schritt auf dem Weg zur Dekarbonisierung unternommen. Die neuen europäischen Zielvorgaben sind in Deutschland mit der Verabschiedung des Klimaschutzgesetzes seit Ende 2019 schon verbindlich festgeschrieben, wobei hier bereits spezifische CO2-Budgets für die Einzelsektoren definiert werden. Die Umsetzung dieser Ziele verlangt eine radikale Transformation des heutigen Energieversorgungssystems.
Der Umbau des komplexen und heterogenen Wärmebereiches stellt dabei eine der größten Herausforderung dar: Wärme ist in Europa für über 50 % des Endenergieverbrauches verantwortlich, wird aber gegenwärtig nur zu 22 % aus erneuerbaren Quellen bereitgestellt. Aus geoklimatischen, kulturellen und politischen Gründen sind dabei die Anteile in den einzelnen europäischen Ländern sehr unterschiedlich. Unter den Spitzenreitern sind Schweden (66 %) und Dänemark (48 %). Unser Nachbarland Österreich erreicht immerhin 34 %. Im Vergleich dazu liegt Deutschland mit 15 % abgeschlagen auf einem hinteren Platz.
Der verstärkte Einsatz erneuerbarer Energien ist neben der Steigerung der Energieeffizienz die tragende Säule der Wärmewende, wobei hier ein breiter Mix an Technologien gefragt ist.
Die direkte Nutzung der Wärmetechnologien hat weiterhin Priorität, erfordert aber eine stark beschleunigte Erschließung der vorhandenen Potenziale sowie einen nachhaltigen Umgang mit wertvoller Biomasse.
Die Sektorenkopplung bietet die notwendige Ergänzung für die geplante Transformation (BMWi, 2021). Solarenergie in Form von Solarwärme und Solarstrom wird somit in Kombination mit Umweltwärme eine zentrale Rolle im zukünftigen Wärme- und Kälteversorgungssystem spielen. Darauf fokussiert sich der Beitrag, wobei die spezifische Situation der Niedertemperatur-Solarthermie und der Schlüsseltechnologie Wärmepumpe adressiert werden.
Im Folgenden wird die Klimaschutzwirkung der aktuellen Flottenverbrauchsnorm der Europäischen Kommission für Deutschland diskutiert und in den Kontext der im Jahr 2020 signifikant angestiegenen Zahl von verkauften Pkw mit Elektromotor gesetzt.
Dabei wird die aktuelle Entwicklung der Pkw-Flotte in Deutschland mit mehreren Szenarien verglichen. Erstens wird eine mögliche Verschärfung aktuell gültigen Rechts im Sinne eines European Green Deal angedacht. Zweitens wird dieser eher technische Zugang verglichen mit der Möglichkeit, durch Vermeidung und Verlagerung auf Fahrten mit dem Pkw zu verzichten. Drittens wird die Rolle von Plug-In-Hybriden diskutiert.
Auf dieser Basis werden Politikempfehlungen ausgesprochen, wie die Flottenverbrauchsnorm weiterentwickelt werden kann, um die Klimaschutzambition zu erhöhen.
Das Ziel der Energiewende - ein sicheres, umweltverträgliches und ökonomisch erfolgreiches Energiesystem - birgt diverse Herausforderungen. Diese umfassen die Erreichung der Klimaneutralität, den Umstieg auf erneuerbare Energieträger in allen Sektoren (inkl. Schwerlast- und Flugverkehr sowie industrielle Prozesswärme) als auch deren gegenseitige Integration. Bioenergie kann hierzu einen multiplen Beitrag leisten, sowie negative Emissionen bereitstellen und darüber hinaus auch Beiträge jenseits des Energiesystems erbringen, wie Naturschutz, ländliche Entwicklung, oder die Bereitstellung von biogenem CO2 als Rohstoff für die chemische Industrie. Somit ist Bioenergie ein unverzichtbarer Bestandteil für die Lösung der Herausforderungen in der Transformation zu einem nachhaltigen Energiesystem.
Gegenwärtig stellt Bioenergie mit dem größten Anteil an erneuerbaren Energien im Primärenergieverbrauch (60 %) als auch im Endenergieverbrauch (53 %), mehr als alle anderen erneuerbaren Energieträger zusammen. Dabei bestehen Unterschiede zwischen den Endenergiesektoren: während Bioenergie in der Bruttostromerzeugung 24 % des erneuerbaren Stroms deckt, dominiert sie die erneuerbare Bereitstellung von Wärme mit 86 % als auch den erneuerbaren Endenergieverbrauch im Verkehrssektor mit 88 % in 2018. Aufgrund der Bedeutung von Bioenergie heute werden Beispiele vorgestellt, welche einen zukünftigen multipleren Systembeitrag von Bioenergie fokussieren.
Die Erkenntnisse der Klimaforschung sind eindeutig: Um das im Pariser Klimaabkommen vereinbarte Ziel der Begrenzung der Erderwärmung auf "deutlich unter 2 °C" noch einhalten zu können, müssen die globalen Treibhausgasemissionen umgehend ihren Scheitelpunkt erreichen und anschließend kontinuierlich und steil zurückgehen. Dies gilt umso mehr für die ebenfalls im Pariser Klimaabkommen vereinbarte Absicht, die Erwärmung möglichst sogar unter 1,5 °C zu halten. Durch eine entsprechende Begrenzung der Erderwärmung kann nach aktuellem Wissensstand die Gefahr des Auslösens gefährlicher Kipppunkte und einer sich selbst verstärkenden Erwärmung deutlich vermindert werden.
Der schnell fortschreitende Digitalisierungs- und Automatisierungsprozess ist heute schon ein wichtiger Wegbegleiter für die Transformation des aktuellen Energiesystems. Im vorliegenden Beitrag werden sechs Anwendungsbeispiele vorgestellt, die deutlich machen, dass die Energiewende ohne Digitalisierung nicht denkbar ist.
Die Digitalisierung ist längst gelebte Praxis. Jeden Tag werden Milliarden an "digitalen" Handlungen ausgeführt. Beispielsweise werden täglich 207 Mrd. E-Mails verschickt, 8,8 Mrd. YouTube-Videos angesehen und 36 Mio. Amazonkäufe getätigt. Dabei nimmt die Geschwindigkeit, mit der neue Anwendungen entwickelt und etabliert werden, kontinuierlich zu. Es stellt sich also die Frage, was im Energiesektor zu erwarten ist und wie die Entwicklung zielgerichtet genutzt werden kann.
Welche Rolle spielt die Digitalisierung mit der Vielzahl ihrer Methoden und Anwendungen für die Energiewende - also für die Transformation unseres Energiesystems im Sinne der vereinbarten Klimaschutzziele? Ist sie notwendige Voraussetzung für den Systemumbau und ermöglicht beispielsweise erst den Übergang auf ein nahezu vollständig erneuerbares Energiesystem (Enabler) oder ist sie lediglich ein nützliches, den Umbau beschleunigendes Hilfsmittel (Facilitator)? Welche Veränderungen sind durch die Ziele der Energiewende getrieben und welche durch die Verbreitung von Techniken der Digitalisierung? All dies waren Fragen, die im Rahmen der Jahrestagung 2018 des Forschungsverbunds Erneuerbare Energien unter dem Titel "Die Energiewende - smart und digital" behandelt wurden. Dieser einführende Beitrag versucht einige Anhaltspunkte zur Beantwortung dieser Fragen zu liefern und in das Thema einzuführen.
In dem Forschungsprojekt "Technologien für die Energiewende" (TF_Energiewende) bewertet ein Konsortium von drei Verbundpartnern und zehn Technologiepartnern unter der Federführung des Wuppertal Instituts seit Herbst 2016 den mittelfristigen Forschungs- und Entwicklungsbedarf für die zentralen Technologien, die im Rahmen der Energiewende derzeit und zukünftig benötigt werden.
Solarthermische Kraftwerke
(2018)
Der Schutz des Klimas und die dafür erforderliche Umstellung der Energieversorgung auf erneuerbare Energien ist eine globale Herausforderung, welche nach maßgeschneiderten Lösungen für die unterschiedlichen Klimazonen und Märkte der Erde verlangt. Die verstärkte Solarenergienutzung spielt dabei eine maßgebliche Rolle. Die Rolle Deutschlands als Exportnation beschränkt sich hierbei nicht auf die Klimawende im eigenen Land, sondern beinhaltet auch den weltweiten Export erneuerbarer Energietechnologien.
Die Kosten der photovoltaischen Stromerzeugung (PV) und der Windkraft sind in den vergangenen Jahren erfreulicherweise deutlich gesunken, entsprechend wurden in vielen Ländern große Kapazitäten zugebaut. Die resultierende stark gestiegene Einspeisung fluktuierender Erzeuger stellt Netzbetreiber vor neue Herausforderungen, insbesondere durch die extremen Lastschwankungen für plan- und steuerbare, heute größtenteils fossil befeuerte konventionelle Kraftwerke.
Hier bieten solarthermische Kraftwerke Lösungen.
Szenarien spielten und spielen eine zentrale Rolle für die Gestaltung der Energiewende. Sie beschreiben dabei auf konsistente Weise die mögliche zukünftige Entwicklung des Systems unter bestmöglicher Berücksichtigung des aktuellen Wissens bezüglich des Systems, d.h. der internen Abhängigkeiten und Wechselwirkungen der Systemkomponenten, aber auch die Abhängigkeit der Systementwicklung von äußeren Faktoren. Damit liefern Szenarien Leitplanken für zentrale technisch-strukturelle, energiepolitische, ökonomische und gesellschaftliche Weichenstellungen, die einen zielgerichteten Transformationsprozess flankieren müssen.
Bei der Energiewende handelt es sich um einen komplexen Transformationsprozess, der nicht allein aus der nationalen Perspektive betrachtet werden kann. Er ist nicht vollständig unabhängig, sondern in einen Mehr-Ebenen-Prozess eingebunden. Es gilt entsprechend sowohl lokale als auch regionale, nationale, europäische und auch die internationalen Energiewendeprozesse und zugehörigen Rahmenbedingungen zu diskutieren und zu beachten. Es gilt aber auch, über den eigentlichen Energiebereich hinausgehende Trends in ihren Wechselwirkungen mit dem Energiesystem zu identifizieren und zu analysieren. Mit der Energiewende wird zudem eine Zielvielfalt angesprochen. Es geht über das Erreichen von Klimaschutzzielen hinaus um eine größere Vielfalt von gesellschaftlich-politischen Zielen.
Der Transformationsprozess hat keine eindimensionale Zielorientierung, sondern muss in einer mehrdimensionalen Betrachtung analysiert werden.
Dieser Artikel ist der Frage gewidmet, welchen Beitrag eine verstärkte Sektorenkopplung zum Gelingen der Energiewende leisten kann. Ausgehend von einer Einführung der Prinzipien und Technologien bietet er Einblicke in die zur Erforschung der Sektorenkopplung angewendeten Methoden, sowie ausgewählte Ergebnisse.
Hinsichtlich der Energieversorgung versteht man unter Sektorenkopplung im Allgemeinen eine engere Verzahnung und Verknüpfung verschiedener Energieanwendungsbereiche, sowie die Zunahme von Verzweigungs- und Verknüpfungsstellen im Energiesystem. Die wesentlichen Anwendungsbereiche der Energie sind dabei die Bereitstellung von Strom, Wärme und Mobilität.
Limits und Leitplanken : wie sich die Richtung des Wandels hin zum Weniger beeinflussen lässt
(2016)
Wärmewende im Quartier
(2016)