Refine
Year of Publication
Document Type
- Peer-Reviewed Article (164) (remove)
Language
- English (164) (remove)
Division
- Zukünftige Energie- und Industriesysteme (164) (remove)
"Sustainable Development" can be understood as a widely used discourse that has become even more prominent since the publication of the UN Agenda 2030 for Sustainable Development in 2015. In this paper we analyze the way sustainable development discourse unfolds within the context of development aid in Germany by undertaking a discourse analysis of reports on development policy published 1973-2017 by the German Federal Ministry for Economic Cooperation and Development. Our analysis reveals that the sustainable development discourse is characterized by distinct components and storylines that change over time. We detect, in general, a shift away from a focus on environmental protection toward an emphasis on the role of the private sector in leading sustainable development. We argue, therefore, that although development is now only legitimate if it is "sustainable", the discourse apparently facilitates the uneven allocation of development aid. The concern that arises here is that although Agenda 2030 pledges to take "bold and transformative steps" to secure the planet and to leave "no one behind" the least developed states who cannot provide "private sector opportunities" or fulfil "national self-responsibilities" for sustainable development are indeed being "left behind".
There is a growing body of scientific evidence supporting sufficiency as an inevitable strategy for mitigating climate change. Despite this, sufficiency plays a minor role in existing climate and energy policies. Following previous work on the National Energy and Climate Plans of EU countries, we conduct a similar content analysis of the recommendations made by citizen assemblies on climate change mitigation in ten European countries and the EU, and compare the results of these studies. Citizen assemblies are representative mini-publics and enjoy a high level of legitimacy.
We identify a total of 860 mitigation policy recommendations in the citizen assemblies' documents, of which 332 (39 %) include sufficiency. Most of the sufficiency policies relate to the mobility sector, the least relate to the buildings sector. Regulatory instruments are the most often proposed means for achieving sufficiency, followed by fiscal and economic instruments. The average approval rate of sufficiency policies is high (93 %), with the highest rates for regulatory policies.
Compared to National Energy and Climate Plans, the citizen assembly recommendations include a significantly higher share of sufficiency policies (factor three to six) with a stronger focus on regulatory policies. Consequently, the recommendations can be interpreted as a call for a sufficiency turn and a regulatory turn in climate mitigation politics. These results suggest that the observed lack of sufficiency in climate policy making is not due to a lack of legitimacy, but rather reflects a reluctance to implement sufficiency policies, the constitution of the policy making process and competing interests.
To combat climate change, it is anticipated that in the coming years countries around the world will adopt more stringent policies to reduce greenhouse gas emissions and increase the use of clean energy sources. These policies will also affect the industry sector, which means that industrial production is likely to progressively shift from CO2-emitting fossil fuel sources to renewable energy sources. As a result, a region's renewable energy resources could become an increasingly important factor in determining where energy-intensive industries locate their production. We refer to this pull factor as the "renewables pull" effect. Renewables pull could lead to the relocation of some industrial production as a consequence of regional differences in the marginal cost of renewable energy sources. In this paper, we introduce the concept of renewables pull and explain why its importance is likely to increase in the future. Using the examples of direct reduced iron (DRI) and ammonia production, we find that the future costs of climate-neutral production of certain products is likely to vary considerably between regions with different renewable energy resources. However, we also identify the fact that many other factors in addition to energy costs determine the decisions that companies make in term of location, leaving room for further research to better understand the future relevance of renewables pull.
Green hydrogen and synthetic fuels are increasingly recognized as a key strategic element for the progress of the global energy transition. The Middle East and North Africa (MENA) region, with its large wind and solar potential, is well positioned to generate renewable energy at low cost for the production of green hydrogen and synthetic fuels, and is therefore considered as a potential future producer and exporter. Yet, while solar and wind energy potentials are essential, other factors are expected to play an equally important role for the development of green hydrogen and synthetic fuels (export) sectors. This includes, in particular, adequate industrial capacities and infrastructures. These preconditions vary from country to country, and while they have been often mentioned in the discussion on green hydrogen exports, they have only been examined to a limited extent. This paper employs a case study approach to assess the existing infrastructural and industrial conditions in Jordan, Morocco, and Oman for the development of a green hydrogen and downstream synthetic fuel (export) sector.
In the energy sector, few topics, if any, are more hyped than hydrogen. Countries develop hydrogen strategies to provide a perspective for hydrogen production and use in order to meet climate-neutrality goals. However, in this topical field the role of water is less accentuated. Hence, in this study, we seek to map the interrelations between the water and wastewater sector on the one hand and the hydrogen sector on the other hand, before reflecting upon our findings in a country case study. We chose the Hashemite Kingdom of Jordan because (i) hydrogen is politically discussed not least due to its high potentials for solar PV, and (ii) Jordan is water stressed - definitely a bad precondition for water-splitting electrolyzers. This research is based on a project called the German-Jordanian Water-Hydrogen-Dialogue (GJWHD), which started with comprehensive desk research mostly to map the intersectoral relations and to scope the situation in Jordan. Then, we carried out two expert workshops in Wuppertal, Germany, and Amman, Jordan, in order to further discuss the nexus by inviting a diverse set of stakeholders. The mapping exercise shows various options for hydrogen production and opportunities for planning hydrogen projects in water-scarce contexts such as Jordan.
Nigeria is Africa's top cement producer and could be on course to be one of the top producers globally. The goal of this study is to identify and critically examine the pathways available to Nigeria to meet its decarbonisation goals in the cement sector. Based on a literature review, the study assesses demand drivers and decarbonisation potentials for the sector. It then presents two different quantitative pathways for growth in production of cement by 2050, and three different pathways for decarbonisation of the sector. Using published data and a scenario analysis tool, the study calculates how the sector's emissions might evolve under each of these pathways. The results indicate that, in the most ambitious scenario, emissions from the sector can plateau by the late 2030s, resulting in an overall increase of 21% by 2050 (compared to 2015 levels). Achieving this scenario is necessary in order to put the sector on a path to net zero emissions beyond 2050. The scenario is driven by reductions in both energy-related and process emissions, as well as a small share of carbon capture and storage and demand management. A moderately ambitious scenario that relies mostly on savings on energy-related emissions results in an 84% increase in emissions by 2050. Finally, the Business-as-Usual scenario results in an almost tripling of emissions by 2050. The results indicate a strong potential for policies to drive improvements in energy efficiency and clinker-to-cement ratio. Critical areas of uncertainty within the assumptions include the production rates (including the evolution of the export market) and the fuel mix.
Transponder-based Aircraft Detection Lighting Systems (ADLS) are increasingly used in wind turbines to limit beacon operation times, reduce light emissions, and increase wind energy acceptance. The systems use digital technologies such as receivers of digital transponder signals, LTE/5G, and other information and communication technology. The use of ADLS will be mandatory in Germany both for new and existing wind turbines with a height of >100 m from 2023 (onshore) and 2024 (offshore), so a nationwide rollout is expected to start during 2022. To fully realize the benefits while avoiding risks and bottlenecks, a thorough and holistic understanding of the efforts required and the impacts caused along the life cycle of an ADLS is essential. Therefore, this study presents the first multi-aspect holistic evaluation of an ADLS. A framework for evaluating digital applications in the energy sector, previously developed by the authors, is refined and applied. The framework is based on multi-criteria analysis (MCA), life cycle assessment (LCA), and expert interviews. On an aggregated level, the MCA results show an overall positive impact from all stakeholders’ perspectives. Most positive impacts are found in the society and politics category, while most negative impacts are of technical nature. The LCA of the ADLS reveals a slightly negative impact, but this impact is negligible when compared to the total life cycle impact of the wind turbines of which the ADLS is a part. Besides the aggregated evaluation, detailed information on potential implementation risks, bottlenecks, and levers for life cycle improvement are presented. In particular, the worldwide scarcity of the required semiconductors, in combination with the general lack of technicians in Germany, lead to the authors’ recommendation for a limited prolongation of the planned rollout period. This period should be used by decision-makers to ensure the availability of technical components and installation capacities. A pooling of ADLS installations in larger regions could improve plannability for manufacturers and installers. Furthermore, an ADLS implementation in other countries could be supported by an early holistic evaluation using the presented framework.
Community-based approaches to natural resource management are being discussed and experienced as promising ways for pursuing ecological conservation and socio-economic development simultaneously. However, the multiplicity of levels, scales, objectives and actors that are involved in sustainability transformations tends to be challenging for such bottom-up approaches. Collaborative and polycentric governance schemes are proposed for dealing with those challenges. What has not been fully explored is how knowledge from local contexts of community-based initiatives can be diffused to influence practices on higher levels and/or in other local contexts. This study explores how theoretical advances in the diffusion of grassroots innovation can contribute to understanding and supporting the diffusion of knowledge and practices from community-based initiatives and proposes a transdisciplinary approach to diffusion. For that aim, we develop an analytical perspective on the diffusion of grassroots innovations that takes into consideration the multiplicity of actors, levels and scales, the different qualities/types of knowledge and practices, as well as their respective contributions. We focus on the multiplicity and situatedness of cognitive frames and conceptualize the diffusion of grassroots innovations as a transdisciplinary process. In this way three different diffusion pathways are derived in which the knowledge and practices of grassroots initiatives can be processed in order to promote their (re)interpretation and (re)application in situations and by actors that do not share the cognitive frame and the local context of the originating grassroots initiative. The application of the developed approach is illustrated through transdisciplinary research for the diffusion of sustainable family farming innovations in Colombia. This conceptualization accounts for the emergence of multiplicity as an outcome of diffusion by emphasizing difference as a core resource in building sustainable futures.
Sufficiency measures are potentially decisive for the decarbonisation of energy systems but rarely considered in energy policy and modelling. Just as efficiency and renewable energies, the diffusion of demand-side solutions to climate change also relies on policy-making. Our extensive literature review of European and national sufficiency policies fills a gap in existing databases. We present almost 300 policy instruments clustered into relevant categories and publish them as "Energy Sufficiency Policy Database". This paper provides a description of the data clustering, the set-up of the database and an analysis of the policy instruments. A key insight is that sufficiency policy includes much more than bans of products or information tools leaving the responsibility to individuals. It is a comprehensive instrument mix of all policy types, not only enabling sufficiency action, but also reducing currently existing barriers. A policy database can serve as a good starting point for policy recommendations and modelling, further research is needed on barriers and demand-reduction potentials of sufficiency policy instruments.
Innovative digital technologies open up new opportun ities for small and medium-sized enterprises (SMEs) to improve energy efficiency and energy management behavior. The question is: How far will SMEs be capable of profiting from the benefits of these new technologies? Using technology screening, this study identifies smart metering and mobile energy monitoring as digital technologies best addressing SMEs' specific demands. In addition, potentials and limitations of the technologies are investigated in two qualitative in-depth field trials. Barriers to adopting digitally enabled energy management practices are examined. The results indicate that visualising energy data enables SMEs to pursue new energy management practices for reducing energy consumption and costs (such as peak load analysis). SMEs need extensive guidance to identify and pursue these strategies. In conclusion, an exploratory adoption model for digitally enabled energy management practices is developed. Hypotheses for future experimental studies and policy implications are derived.
The war in Ukraine is changing the political landscape at breakneck speed. How should politics and society react to high energy prices and a precarious dependence on fossil fuels imports? Can modern societies get by with much less energy? Energy sufficiency can play an important role in answering these questions. The contributions in this Special topic explore sufficiency as an interdisciplinary research topic for energy modeling, scenarios, and policy.
Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle patterns towards this direction. This perspective highlights the research capacity needed to inform on the role and potential of the circular economy for climate change mitigation and to enhance the scientific capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing conceptual and methodological bridges amongst the relevant and currently fragmented research communities, thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sustainable development. Following similar calls for science in support of climate action, a transdisciplinary scientific agenda is needed to co-create the goals and scientific processes underpinning the transition pathways towards a circular, net-zero economy with representatives from policy, industry, and civil society. Here, it is argued that such integration of disciplines, methods, and communities can then lead to new and/or structurally enhanced quantitative systems models that better represent critical industrial value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement towards assessing the material implications of, and the contribution of enhanced circularity performance to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the transition to a circular economy.
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe, existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of sites and to regional policy. This paper describes an approach to model production stock invest for the steel industries in North-Western Europe. Current spatial structures are reproduced with capacity, technical and energy efficiency data on the level of single facilities like blast furnaces. With the model developed both investments in specific technologies and at specific production sites can be modelled. The model is used to simulate different possible future scenarios. The case with a clear move to hydrogen-based production is compared to a reference scenario without technological shift. The scenarios show that existing trends like movement of production to the coast may be accelerated by the new technology but that sites in the hinterland can also adapt to a hydrogen economy. Possible effects of business cycles or a circular economy on regional value chains are explored with a Monte-Carlo analysis.
Model-based scenario analyses of future energy systems often come to deviating results and conclusions when different models are used. This may be caused by heterogeneous input data and by inherent differences in model formulations. The representation of technologies for the conversion, storage, use, and transport of energy is usually stylized in comprehensive system models in order to limit the size of the mathematical problem, and may substantially differ between models. This paper presents a systematic comparison of nine power sector models with sector coupling. We analyze the impact of differences in the representation of technologies, optimization approaches, and further model features on model outcomes. The comparison uses fully harmonized input data and highly simplified system configurations to isolate and quantify model-specific effects. We identify structural differences in terms of the optimization approach between the models. Furthermore, we find substantial differences in technology modeling primarily for battery electric vehicles, reservoir hydro power, power transmission, and demand response. These depend largely on the specific focus of the models. In model analyses where these technologies are a relevant factor, it is therefore important to be aware of potential effects of the chosen modeling approach. For the detailed analysis of the effect of individual differences in technology modeling and model features, the chosen approach of highly simplified test cases is suitable, as it allows to isolate the effects of model-specific differences on results. However, it strongly limits the model's degrees of freedom, which reduces its suitability for the evaluation of fundamentally different modeling approaches.
Although smart energy technologies (SETs) can fulfill multiple tasks in increasingly decarbonized and digitalized energy systems, market diffusion is still limited. This study investigates which beliefs influence consumers' intention to adopt two smart-energy offerings, whether the rapid growth of the smart home market will now drive SET adoption, and if consumer-driven diffusion will lead to sustainability potentials being realized. Building on UTAUT2, a new theoretical model is proposed, and a consumer acceptance survey was conducted in Germany (n = 700). Results indicate that a growing smart home market will not increase SET adoption and that "adjustable green defaults" should be introduced.
To limit global warming, the use of carbon capture and storage technologies (CCS) is considered to be of major importance. In addition to the technical-economic, ecological and political aspects, the question of social acceptance is a decisive factor for the implementation of such low-carbon technologies. This study is the first literature review addressing the acceptance of industrial CCS (iCCS). In contrast to electricity generation, the technical options for large-scale reduction of CO2 emissions in the energy-intensive industry sector are not sufficient to achieve the targeted GHG neutrality in the industrial sector without the use of CCS. Therefore, it will be crucial to determine which factors influence the acceptance of iCCS and how these findings can be used for policy and industry decision-making processes. The results show that there has been limited research on the acceptance of iCCS. In addition, the study highlights some important differences between the acceptance of iCCS and CCS. Due to the technical diversity of future iCCS applications, future acceptance research must be able to better address the complexity of the research subject.
In Argentina, renewable energies are promoted as a way of decarbonising the electricity mix and providing reliable energy services. The national goal is to generate 20% of electricity from renewable sources by 2025. However, despite significant natural potential, solar photovoltaic still represents only a small share of Argentina's total electricity generation. Although this picture may look bleak, a wide range of market segments relating to decentralised photovoltaic generation in Argentina have developed. The general objective of this study is to examine the dynamics that currently enable or constrain the diffusion of distributed photovoltaic systems in Argentina. By applying the Technical Innovation System (TIS) approach, the aim is to understand which functions of the system are strong/weak and how these are influenced by endogenous/exogenous system strengths and weaknesses. To that end, a mixed method research strategy is applied. The exploratory sequential research design allows first to explore system strengths and weaknesses based on qualitative approaches, and then to further analyse the contextual embeddedness and the level of importance of the identified variables using quantitative survey instruments. Thereby, this study provides an important analytical method that contributes to a more nuanced understanding of the interdependencies of the TIS. The empirical results indicate that system weaknesses are shaped to a large extent by the overall contextual dynamics - such as political instability, energy subsidies and high inflation rates. System strengths relate to both the TIS itself (particularly knowledge development through pilot projects and market formation through provincial and national support programmes), to contextual relationships (linked to the availability of educational institutions that enable the rapid diffusion of knowledge) and to the importance of rural areas as protected spaces for the application of photovoltaic systems. Consequently, the study highlights the challenges to overcome for the broader diffusion of distributed photovoltaic generation.
The development of digital technologies is accelerating, enabling increasingly profound changes in increasingly short time periods. The changes affect almost all areas of the economy as well as society. The energy sector has already seen some effects of digitalization, but more drastic changes are expected in the next decades. Besides the very positive impacts on costs, system stability, and environmental effects, potential obstacles and risks need to be addressed to ensure that advantages can be exploited while adverse effects are avoided. A good understanding of available and future digital applications from different stakeholders' perspectives is necessary. This study proposes a framework for the holistic evaluation of digital applications in the energy sector. The framework consists of a combination of well-established methods, namely the multi-criteria analysis (MCA), the life cycle assessment (LCA), and expert interviews. The objective is to create transparency on benefits, obstacles, and risks as a basis for societal and political discussions and to supply the necessary information for the sustainable development and implementation of digital applications. The novelty of the proposed framework is the specific combination of the three methods and its setup to enable sound applicability to the wide variety of digital applications in the energy sector. The framework is tested subsequently on the example of the German smart meter roll-out. The results reveal that, on the one hand, the smart meter roll-out clearly offers the potential to increase the system stability and decrease the carbon emission intensity of the energy system. Therefore, the overall evaluation from an environmental perspective is positive. However, on the other hand, close attention needs to be paid to the required implementation and operational effort, the IT (information technology) and data security, the added value for the user, the social acceptance, and the realization of energy savings. Therefore, the energy utility perspective in particular results in an overall negative evaluation. Several areas with a need for action are identified. Overall, the proposed framework proves to be suitable for the holistic evaluation of this digital application.
The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations.
Energy sufficiency is one of the three energy sustainability strategies, next to energy efficiency and renewable energies. We analyse to what extent European governments follow this strategy, by conducting a systematic document analysis of all available European National Energy and Climate Plans (NECPs) and Long-Term Strategies (LTSs). We collect and categorise a total of 230 sufficiency-related policy measures, finding large differences between countries. We find most sufficiency policies in the transport sector, when classifying also modal shift policies to change the service quality of transport as sufficiency policies. Types of sufficiency policy instruments vary considerably from sector to sector, for instance the focus on financial incentives and fiscal instruments in the mobility sector, information in the building sector, and financial incentive/tax instruments in cross-sectoral application. Regulatory instruments currently play a minor role for sufficiency policy in the national energy and climate plans of EU member states. Similar to energy efficiency in recent decades, sufficiency still largely referred to as micro-level individual behaviour change or necessary exogenous trends that will need to take place. It is not treated yet as a genuine field of policy action to provide the necessary framework for enabling societal change.
Local implementation projects for sector coupling play an important role in the transformation to a more sustainable energy system. Despite various technical possibilities, there are various barriers to the realisation of local projects. Against this backdrop, we introduce an inter- and transdisciplinary approach to identifying and evaluating different power-to-X paths as well as setting up robust local implementation projects, which account for existing drivers and potential hurdles early on. After developing the approach conceptually, we exemplify our elaborations by applying them to a use case in the German city of Wuppertal. It can be shown that a mix of several interlinked interdisciplinary methods as well as several participatory elements is suitable for triggering a collective, local innovation process. However, the timing and extent of end-user integration remain a balancing act. The paper does not focus on a detailed description of power-to-X (PtX) as a central pillar of the sustainable transformation of the energy system. Rather, it focuses on the innovative methodological approach used to select a suitable use path and design a corresponding business model. The research approach was successfully implemented in the specific case study. However, it also becomes clear that the local-specific consideration entails limitations with regard to the transferability of the research design to other spatial contexts.
We conduct a systematic, interdisciplinary review of empirical literature assessing evidence on induced innovation in energy and related technologies. We explore links between demand-drivers (both market-wide and targeted); indicators of innovation (principally, patents); and outcomes (cost reduction, efficiency, and multi-sector/macro consequences). We build on existing reviews in different fields and assess over 200 papers containing original data analysis. Papers linking drivers to patents, and indicators of cumulative capacity to cost reductions (experience curves), dominate the literature. The former does not directly link patents to outcomes; the latter does not directly test for the causal impact of on cost reductions). Diverse other literatures provide additional evidence concerning the links between deployment, innovation activities, and outcomes. We derive three main conclusions. (1) Demand-pull forces enhance patenting; econometric studies find positive impacts in industry, electricity and transport sectors in all but a few specific cases. This applies to all drivers - general energy prices, carbon prices, and targeted interventions that build markets. (2) Technology costs decline with cumulative investment for almost every technology studied across all time periods, when controlled for other factors. Numerous lines of evidence point to dominant causality from at-scale deployment (prior to self-sustaining diffusion) to cost reduction in this relationship. (3) Overall Innovation is cumulative, multi-faceted, and self-reinforcing in its direction (path-dependent). We conclude with brief observations on implications for modeling and policy. In interpreting these results, we suggest distinguishing the economics of active deployment, from more passive diffusion processes, and draw the following implications. There is a role for policy diversity and experimentation, with evaluation of potential gains from innovation in the broadest sense. Consequently, endogenising innovation in large-scale models is important for deriving policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation to the qualitative socio-technical transitions literatures could be a fruitful area for future research.
Despite Germany's Paris Agreement pledge and coal exit legislation, the political debate around carbon-intensive coal remains heated. Coal power and mining have played an important, yet changing role in the history of German politics. In this paper, we analyze the entire parliamentary debate on coal in the German parliament (Bundestag) from its inception in 1949 to 2019. For this purpose we extract the more than 870,000 parliamentary speeches from all protocols in the history of the Bundestag. We identify the 9167 speeches mentioning coal and apply dynamic topic modeling – an unsupervised machine learning technique that reveals the changing thematic structure of large document collections over time - to analyze changes in parliamentary debates on coal over the past 70 years. The trends in topics and their varying internal structure reflect how energy policy was discussed and legitimized over time: Initially, coal was framed as a driver of economic prosperity and guarantee of energy security. In recent years, the debate evolved towards energy transition, coal phase-out and renewable energy expansion. Germany’s smaller and younger parties, the Greens and the Left Party, debate coal more often in the context of the energy transition and climate protection than other parties. Our results reflect trends in other countries and other fields of energy policy. Methodologically, our study illustrates the potential of and need for computational methods to analyze vast corpora of text and to complement traditional social science methods.
The number of input-output assessments focused on energy has grown considerably in the last years. Many of these assessments combine data from multi-regional input-output (MRIO) databases with energy extensions that completely or partially depict the different stages through which energy products are supplied or used in the economy.
The improper use of some energy extensions can lead to double accounting of some energy flows, but the frequency with which this happens and the potential impact on the results are unknown. Based on a literature review, we estimate that around a quarter of the MRIO-based energy assessments reviewed incurred into double accounting. Using the EXIOBASE MRIO database, we also analyse the effects of double accounting in the absolute values and rankings of different countries' and products' energy footprints.
Building on the insights provided by our analysis, we offer a set of key recommendations to MRIO users to avoid the double accounting problem in the future. Likewise, we conclude that the harmonisation of the energy data across MRIO databases led by experts could simplify the choices of the data users until the provision of official energy extensions by statistical offices becomes a widespread practice.
Flexible, system-oriented operating strategies are becoming increasingly important in terms of achieving a climate-neutral energy system transformation. Solid-oxide electrolysis (SOEC) can play an important role in the production of green synthesis gas from renewable energy in the future. Therefore, it is important to investigate the extent to which SOEC can be used flexibly and which feedback effects and constraints must be taken into account. In this study, we derived a specific load profile from an energy turnaround scenario that supports the energy system. SOEC short-stacks were operated and we investigated the impact that the load profile has on electrical stack performance and stack degradation as well as the product gas composition by means of Fourier-transform infrared spectroscopy. The stacks could follow the grid-related requirement profiles of secondary control power and minute reserves very well with transition times of less than two minutes per 25% of relative power. Only short-term disturbances of the H2/CO ratio were observed during transitions due to the adjustment of feed gases. No elevated degradation effects resulting from flexible operation were apparent over 1300 h, although other causes of degradation were present.
Water availability plays an important role in the expansion planning of utility-scale solar power plants, especially in the arid regions of the Middle East and North Africa. Although these power plants usually account for only a small fraction of local water demand, competition for water resources between communities, farmers, companies, and power suppliers is already emerging and is likely to intensify in future. Despite this, to date there has been a lack of comprehensive studies analyzing interdependencies and potential conflicts between energy and water at local level. This study addresses this research gap and examines the linkages between water resources and energy technologies at local level based on a case study conducted in Ouarzazate, Morocco, where one of the largest solar power complexes in the world was recently completed. To better understand the challenges faced by the region in light of increased water demand and diminishing water supply, a mixed-method research design was applied to integrate the knowledge of local stakeholders through a series of workshops. In a first step, regional socio-economic water demand scenarios were developed and, in a second step, water saving measures to avoid critical development pathways were systematically evaluated using a participatory multi-criteria evaluation approach. The results are a set of water demand scenarios for the region and a preferential ranking of water saving measures that could be drawn upon to support decision-making relating to energy and water development in the region.
Roadmaps for India's energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges - such as a lack of technical potential assessments and necessary support infrastructure, and high costs - but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.
The German Energiewende is a deliberate transformation of an established industrial economy towards a nearly CO2-free energy system accompanied by a phase out of nuclear energy. Its governance requires knowledge on how to steer the transition from the existing status quo to the target situation (transformation knowledge). The energy system is, however, a complex socio-technical system whose dynamics are influenced by behavioural and institutional aspects, which are badly represented by the dominant techno-economic scenario studies. In this paper, we therefore investigate and identify characteristics of model studies that make agent-based modelling supportive for the generation of transformation knowledge for the Energiewende. This is done by reflecting on the experiences gained from four different applications of agent-based models. In particular, we analyse whether the studies have improved our understanding of policies' impacts on the energy system, whether the knowledge derived is useful for practitioners, how valid understanding derived by the studies is, and whether the insights can be used beyond the initial case-studies. We conclude that agent-based modelling has a high potential to generate transformation knowledge, but that the design of projects in which the models are developed and used is of major importance to reap this potential. Well-informed and goal-oriented stakeholder involvement and a strong collaboration between data collection and model development are crucial.
Water and energy are two pivotal areas for future sustainable development, with complex linkages existing between the two sectors. These linkages require special attention in the context of the energy transition. Against this background, this paper analyses the role of water availability in the development of solar thermal and photovoltaic power plants for the case of the Draa Valley in southern Morocco. Located in a semi-arid to arid mountainous area, the Drâa Valley faces high water stress - a situation expected to worsen due to climate change. At the same time, the region has one of the greatest potentials for solar energy in the world. To examine whether limited water availability could accelerate or delay the implementation of solar thermal and photovoltaic power plants, this paper compares regional water availability and demand in the Draa Valley for different scenarios, paying particular attention to potential socio-economic development pathways. The Water Evaluation and Planning System software is applied to allocate the water resources in the study region. The water supply is modelled under the Representative Concentration Pathway 8.5 climate scenario, while the water demand for the Drâa Valley is modelled for a combination of three socio-economic and two energy scenarios. The climate scenario describes a significant decrease in water availability by 2050, while the socio-economic and energy scenarios show an increase in water demand. The results demonstrate that during a sequence of dry years the reservoirs water availability is reduced and shortages in water supply can result in high levels of unmet demand. If this situation occurs, oasis farming, water for drinking and energy production could compete directly with each other for water resources. The energy scenarios indicate that the use of dry cooling technologies in concentrated solar power and photovoltaic hybrid systems could be one option for reducing competition for the scarce water resources in the region. However, given that energy generation accounts for only a small share of the regional water demand, the results also suggest that socio-economic demand reduction, especially in the agricultural sector, for example by reducing the cultivated area, will most likely become necessary.
Industrial demand response can play an important part in balancing the intermittent production from a growing share of renewable energies in electricity markets. This paper analyses the role of aggregators - intermediaries between participants and power markets - in facilitating industrial demand response. Based on the results from semi-structured interviews with German demand response aggregators, as well as a wider stakeholder online survey, we examine the role of aggregators in overcoming barriers to industrial demand response. We find that a central role for aggregators is to raise awareness for the potentials of demand response, as well as to support implementation by engaging key actors in industrial companies. Moreover, we develop a taxonomy that helps analyse how the different functional roles of aggregators create economic value. We find that there is considerable heterogeneity in the kind of services that aggregators offer, many of which do create significant economic value. However, some of the functional roles that aggregators currently fill may become obsolete once market barriers to demand response are reduced or knowledge on demand response becomes more diffused.
Driving forces of changing environmental pressures from consumption in the European food system
(2020)
The paper provides an integrated assessment of environmental and socio-economic effects arising from final consumption of food products by European households. Direct and indirect effects accumulated along the global supply chain are assessed by applying environmentally extended input-output analysis (EE-IOA). EXIOBASE 3.4 database is used as a source of detailed information on environmental pressures and world input-output transactions of intermediate and final goods and services. An original methodology to produce detailed allocation matrices to link IO data with household expenditure data is presented and applied. The results show a relative decoupling between environmental pressures and consumption over time and shows that European food consumption generates relatively less environmental pressures outside Europe (due to imports) than average European consumption. A methodological framework is defined to analyze the main driving forces by means of a structural decomposition analysis (SDA). The results of the SDA highlight that while technological developments and changes in the mix of consumed food products result in reductions in environmental pressures, this is offset by growth in consumption. The results highlight the importance of directing specific research and policy efforts towards food consumption to support the transition to a more sustainable food system in line with the objectives of the EU Farm to Fork Strategy.
Electricity generation requires water. With the global demand for electricity expected to increase significantly in the coming decades, the water demand in the power sector is also expected to rise. However, due to the ongoing global energy transition, the future structure of the power supply - and hence future water demand for power generation - is subject to high levels of uncertainty, because the volume of water required for electricity generation varies significantly depending on both the generation technology and the cooling system. This study shows the implications of ambitious decarbonization strategies for the direct water demand for electricity generation. To this end, water demand scenarios for the electricity sector are developed based on selected global energy scenario studies to systematically analyze the impact up to 2040. The results show that different decarbonization strategies for the electricity sector can lead to a huge variation in water needs. Reducing greenhouse gas emissions (GHG) does not necessarily lead to a reduction in water demand. These findings emphasize the need to take into account not only GHG emission reductions, but also such aspects as water requirements of future energy systems, both at the regional and global levels, in order to achieve a sustainable energy transition.
The mass roll out of solar PV across the Global South has enabled electricity access for millions of people. In the right context, Small Wind Turbines (SWTs) can be complementary, offering the potential to generate at times of low solar resource (night, monsoon season, winter, etc.) and increasing the proportion of the total energy system that can be manufactured locally. However, many contextual factors critically affect the viability of the technology, such as the extreme variability in the wind resource itself and the local availability of technical support. Therefore, performing a detailed market analysis in each new context is much more important. The Wind Empowerment Market Assessment Methodology (WEMAM) is a multi-scalar, transdisciplinary methodology for identifying the niche contexts where small wind can make a valuable contribution to rural electrification. This paper aims to inform the development of WEMAM with a critical review of existing market assessment methodologies. By breaking down WEMAM into its component parts, reflecting upon its practical applications to date and drawing upon insights from the literature, opportunities where it could continue to evolve are highlighted. Key opportunities include shifting the focus towards development outcomes; creating community archetypes; localised studies in high potential regions; scenario modelling and MCDA ranking of proposed interventions; participatory market mapping; and applying socio-technical transitions theory to understand how the small wind niche can break through into the mainstream.
In order to ensure security of supply in a future energy system with a high share of volatile electricity generation, flexibility technologies are needed. Industrial demand-side management ranks as one of the most efficient flexibility options. This paper analyses the effect of the integration of industrial demand-side management through the flexibilisation of aluminium electrolysis and other flexibilities of the electricity system and adjacent sectors. The additional flexibility options include electricity storage, heat storage in district heating networks, controlled charging of electric vehicles, and buffer storage in hydrogen electrolysis. The utilisation of the flexibilities is modelled in different settings with an increasing share of renewable energies, applying a dispatch model. This paper compares which contributions the different flexibilities can make to emission reduction, avoidance of curtailment, and reduction of fuel and CO2 costs, and which circumstances contribute to a decrease or increase of overall emissions with additional flexibilities. The analysis stresses the rising importance of flexibilities in an energy system based on increasing shares of renewable electricity generation, and shows that flexibilities are generally suited to reduce carbon emissions. It is presented that the relative contribution towards the reduction of curtailment and costs of flexibilisation of aluminium electrolysis are high, whereby the absolute effect is small compared to the other options due to the limited number of available processes.
Integrated assessment models (IAMs) are commonly used by decision makers in order to derive climate policies. IAMs are currently based on climate-economics interactions, whereas the role of social system has been highlighted to be of prime importance on the implementation of climate policies. Beyond existing IAMs, we argue that it is therefore urgent to increase efforts in the integration of social processes within IAMs. For achieving such a challenge, we present some promising avenues of research based on the social branches of economics. We finally present the potential implications yielded by such social IAMs.
Given large potentials of the MENA region for renewable energy production, transitions towards renewables-based energy systems seem a promising way for meeting growing energy demand while contributing to greenhouse gas emissions reductions according to the Paris Agreement at the same time. Supporting and steering transitions to a low-carbon energy system require a clear understanding of socio-technical interdependencies in the energy system as well as of the principle dynamics of system innovations. For facilitating such understanding, a phase model for renewables-based energy transitions in MENA countries, which structures the transition process over time through the differentiation of a set of sub-sequent distinct phases, is developed in this article. The phase model builds on a phase model depicting the German energy transition, which was complemented by insights about transition governance and adapted to reflect characteristics of the MENA region. The resulting model includes four phases ("Take-off renewables", "System integration", "Power to fuel/gases”, "Towards 100% renewables”), each of which is characterized by a different cluster of innovations. These innovations enter the system via three stages of development which describe different levels of maturity and market penetration, and which require appropriate governance. The phase model has the potential to support strategy development and governance of energy transitions in MENA countries in two complementary ways: it provides an overview of techno-economic developments as orienting guidelines for decision-makers, and it adds some guidance as to which governance approaches are suitable for supporting those developments.
This theory note develops a theoretical approach which integrates the negative spillovers that international institutions often impose on each other into our thinking about their normative legitimacy. Our approach draws on the political philosophy of Rainer Forst which revolves around the right to justification. It suggests that regime complexes facilitate the breakup of institution-specific orders of justification by prompting invested actors to justify negative spillovers vis-a-vis each other. Thus, regime complexes enable more encompassing justifications of negative spillovers than stand-alone international institutions. Against this backdrop, we submit that the proliferation of regime complexes represents normative progress in global governance.
Organic waste to energy (OWtE) technologies have been developed and implemented in Latin America and the Caribbean (LAC) countries. However, they are still far away to significantly contribute not only to treat the ever-increasing waste volumes in the region but also to supply the regional energy demand and meet national carbon emission goals. The technical complexity of these technologies aligned with lack of research, high investment costs and political deficiencies have not allowed for an appropriate implementation of OWtE in the region, where the applicability of large-scale plants remains to be demonstrated. This research presents the state-of-the art of OWtE technologies in the context of the LAC countries based on archival research method. In addition, it presents challenges and opportunities that the region is facing for an adequate implementation of these technologies. The main findings show that OWtE have the potential to improve waste and energy systems in the region by reducing environmental impacts along with a series of social and economic benefits, such as increasing access to a sustainable energy supply. Diverse researches indicate principally anaerobic digestion, fermentation (e.g. 2G bioethanol, etc.), microbial fuel cells, gasification and pyrolysis as efficient technologies to treat solid organic wastes and produce bioenergy.
Participatory modeling - the involvement of stakeholders in the modeling process - can support various objectives, such as stimulating learning processes or promoting mutual understanding of stakeholders. Participatory modeling approaches could therefore be useful for the governance of transitions, but a systematic account of potential application areas of participatory modeling methods in transition governance is still lacking. This article addresses this gap by providing a review of participatory modeling methods and linking them to phases and objectives of transition governance. We reviewed participatory modeling studies in transition research and related fields of social-ecological modeling, integrated assessment and environmental management. We find that participatory modeling methods are mostly used for participatory visioning and goal setting as well as for interactive strategy development. The review shows the potential for extending the application of participatory modeling methods to additional phases of transition governance and for the exchange of experiences between research fields.
Digitalization is a transformation process which has already affected many parts of industry and society and is expected to yet increase its transformative speed and impact. In the energy sector, many digital applications have already been implemented. However, a more drastic change is expected during the next decades. Good understanding of which digital applications are possible and what are the associated benefits as well as risks from the different perspectives of the impacted stakeholders is of high importance. On the one hand, it is the basis for a broad societal and political discussion about general targets and guidelines of digitalization. On the other hand, it is an important piece of information for companies in order to develop and sustainably implement digital applications. This article provides a structured overview of potential digital applications in the German energy (electricity) sector, including the associated benefits and the impacted stakeholders on the basis of a literature review. Furthermore, as an outlook, a methodology to holistically analyze digital applications is suggested. The intended purpose of the suggested methodology is to provide a complexity-reduced fact base as input for societal and political discussions and for the development of new digital products, services, or business models. While the methodology is outlined in this article, in a follow-up article the application of the methodology will be presented and the use of the approach reflected.
A significant reduction in greenhouse gas emissions will be necessary in the coming decades to enable the global community to avoid the most dangerous consequences of man-made global warming. This fact is reflected in Germany's 7th Federal Energy Research Program (EFP), which was adopted in 2018. Direct Air Capture (DAC) technologies used to absorb carbon dioxide (CO2) from the atmosphere comprise one way to achieve these reductions in greenhouse gases. DAC has been identified as a technology (group) for which there are still major technology gaps. The intention of this article is to explore the potential role of DAC for the EFP by using a multi-dimensional analysis showing the technology's possible contributions to the German government's energy and climate policy goals and to German industry's global reputation in the field of modern energy technologies, as well as the possibilities of integrating DAC into the existing energy system. The results show that the future role of DAC is affected by a variety of uncertainty factors. The technology is still in an early stage of development and has yet to prove its large-scale technical feasibility, as well as its economic viability. The results of the multi-dimensional evaluation, as well as the need for further technological development, integrated assessment, and systems-level analyses, justify the inclusion of DAC technology in national energy research programs like the EFP.
Nigeria is Africa's largest economy and home to approximately 10% of the un-electrified population of Sub-Saharan Africa. In 2017, 77 million Nigerians or 40% of the population had no access to affordable, reliable and sustainable electricity. In practice, diesel- and petrol-fuelled back-up generators supply the vast majority of electricity in the country. In Nigeria's nationally-determined contribution (NDC) under the Paris Agreement, over 60% of the greenhouse gas emissions (GHG) reductions are foreseen in the power sector. The goal of this study is to identify and critically examine the pathways available to Nigeria to meet its 2030 electricity access, renewables and decarbonization goals in the power sector. Using published data and stakeholder interviews, we build three potential scenarios for electrification and growth in demand, generation and transmission capacity. The demand assumptions incorporate existing knowledge on pathways for electrification via grid extension, mini-grids and solar home systems (SHS). The supply assumptions are built upon an evaluation of the investment pipeline for generation and transmission capacity, and possible scale-up rates up to 2030. The results reveal that, in the most ambitious Green Transition scenario, Nigeria meets its electricity access goals, whereby those connected to the grid achieve a Tier 3 level of access, and those served by sustainable off-grid solutions (mini-grids and SHS) achieve Tier 2. Decarbonization pledges would be surpassed in all three scenarios but renewable energy goals would only be partly met. Fossil fuel-based back-up generation continues to play a substantial role in all scenarios. The implications and critical uncertainties of these findings are extensively discussed.
In recent years, most countries in the Middle East and North Africa (MENA), including Jordan, Morocco and Tunisia, have rolled out national policies with the goal of decarbonising their economies. Energy policy goals in these countries have been characterised by expanding the deployment of renewable energy technologies in the electricity mix in the medium term (i.e., until 2030). This tacitly signals a transformation of socio-technical systems by 2030 and beyond. Nevertheless, how these policy objectives actually translate into future scenarios that can also take into account a long-term perspective up to 2050 and correspond to local preferences remains largely understudied. This paper aims to fill this gap by identifying the most widely preferred long-term electricity scenarios for Jordan, Morocco and Tunisia. During a series of two-day workshops (one in each country), the research team, along with local stakeholders, adopted a participatory approach to develop multiple 2050 electricity scenarios, which enabled electricity pathways to be modelled using Renewable Energy Pathway Simulation System GIS (renpassG!S). We subsequently used the Analytical Hierarchy Process (AHP) within a Multi-Criteria Analysis (MCA) to capture local preferences. The empirical findings show that local stakeholders in all three countries preferred electricity scenarios mainly or even exclusively based on renewables. The findings demonstrate a clear preference for renewable energies and show that useful insights can be generated using participatory approaches to energy planning.
Urban energy systems have been commonly considered to be socio-technical systems within the boundaries of an urban area. However, recent literature challenges this notion in that it urges researchers to look at the wider interactions and influences of urban energy systems wherein the socio-technical sphere is expanded to political, environmental and economic realms as well. In addition to the inter-sectoral linkages, the diverse agents and multilevel governance trends of energy sustainability in the dynamic environment of cities make the urban energy landscape a complex one. There is a strong case then for establishing a new conceptualisation of urban energy systems that builds upon these contemporary understandings of such systems. We argue that the complex systems approach can be suitable for this. In this paper, we propose a pilot framework for understanding urban energy systems using complex systems theory as an integrating plane. We review the multiple streams of urban energy literature to identify the contemporary discussions and construct this framework that can serve as a common ontological understanding for the different scholarships studying urban energy systems. We conclude the paper by highlighting the ways in which the framework can serve some of the relevant communities.
Many countries are increasingly investing in renewable energy technologies to meet growing energy demands and increase the security of their energy supply. This development is also evident in the Middle East and North Africa (MENA) region, where renewable energy targets and policies have evolved rapidly in recent years. There is a steady increase in both the number of planned and implemented solar photovoltaic (PV) but also of solar thermal projects in form of Concentrating Solar Power (CSP) plants. Many of these installations are designed as large utility-scale systems. Despite the fact that these types of large-scale projects can have significant effects on local communities and their livelihoods, the existing research into the social impacts of such large-scale renewable energy infrastructures at local level is limited. However, assessing and managing these impacts is becoming increasingly important to reduce risks to both the affected communities and to the project and businesses activities. In order to provide more robust evidence on the local effects, this research study reviews the social impacts of large-scale renewable energy infrastructure in the MENA region based on a case study of the NOORo I CSP plant in Ouarzazate, Morocco. Data collected during two empirical field studies, in combination with expert interviews and secondary data analysis, provides detailed evidence on the type and significance of livelihood impacts of the NOORo I CSP plant. The analysis results in a consolidated list of 30 impacts and their significance levels for different stakeholder groups including farmers, young people, women, community representatives and owners of small and medium enterprises. The results show that, overall, the infrastructure development was received positively. The review also indicates that factors identified as having effects on the sustainability of local livelihoods are mainly related to information management and benefit distribution, rather than physical or material aspects.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.
Research on sustainability transitions has expanded rapidly in the last ten years, diversified in terms of topics and geographical applications, and deepened with respect to theories and methods. This article provides an extensive review and an updated research agenda for the field, classified into nine main themes: understanding transitions; power, agency and politics; governing transitions; civil society, culture and social movements; businesses and industries; transitions in practice and everyday life; geography of transitions; ethical aspects; and methodologies. The review shows that the scope of sustainability transitions research has broadened and connections to established disciplines have grown stronger. At the same time, we see that the grand challenges related to sustainability remain unsolved, calling for continued efforts and an acceleration of ongoing transitions. Transition studies can play a key role in this regard by creating new perspectives, approaches and understanding and helping to move society in the direction of sustainability.
New options are needed to reduce the impact of motor vehicles on climate change and declining fossil fuel resources. Cars which are fueled by hydrogen could be a sustainable method of transportation if suitable technologies can be devised to produce hydrogen in an environmentally benign manner along with the provision of the necessary fueling infrastructure. This paper assesses size, space, and cost requirements of bioreactors as a decentralized option to supply hydrogen powered cars with biohydrogen produced from algae or cyanobacteria on a theoretical basis. Decentralized supply of biohydrogen could help to reduce the problems that hydrogen cars face regarding market penetration. A feasibility study for decentralized biohydrogen production is conducted, taking the quantity of hydrogen which is needed to fuel current hydrogen cars into account. While this technology is, in theory, feasible, sizes, and costs of such reactors are currently too high for widespread adoption. Thus, more R&D is needed to close the gap and to approach marketability.