Refine
Year of Publication
Document Type
- Peer-Reviewed Article (32) (remove)
Division
- Zukünftige Energie- und Industriesysteme (32) (remove)
Deutschland soll bis 2045 klimaneutral werden. So steht es im verschärften Klimaschutzgesetz, das im Juni 2021 vom Bundestag verabschiedet wurde. Die deutsche Industrie verursacht derzeit knapp ein Viertel der Treibhausgasemissionen, etwa ein Drittel davon entfällt auf die Eisen- und Stahlproduktion. Um das Klimaziel zu erreichen, müssen somit große CO2-Einsparungen in der Stahlindustrie realisiert werden.
Der Diskurs um die Transformation des Energiesystems ist in den vergangenen Jahren vermehrt über wissenschaftlich fundierte Szenarien geführt worden, die aus verschiedenen gesellschaftlichen Perspektiven in Auftrag gegeben wurden. Der Vergleich von vier im Jahr 2021 erschienenen Studien zeigt auf, wo weitgehende Einigkeit über die erforderlichen Strategien zur Erreichung der Klimaneutralität bis 2045 besteht, und wo die größten Differenzen liegen.
Damit sich die weltweit zunehmend ambitionierten Klimaschutzziele erreichen lassen, müssen auch im Industriesektor weitgehende Emissionsreduktionen innerhalb weniger Jahrzehnte realisiert werden. Expertinnen und Experten sind sich einig, dass dies nicht ohne den Umstieg von fossilen auf erneuerbare Energieträger und Rohmaterialien - sogenannte Feedstocks - umsetzbar ist. Im Zuge der verstärkten Nutzung dieser grünen Energieträger ist denkbar, dass sich deren Verfügbarkeit und Kosten zu immer wichtigeren Standortfaktoren für die Produktion industrieller Güter entwickeln werden. Dies könnte dazu führen, dass zukünftig Standorte mit kostengünstiger Verfügbarkeit von erneuerbaren Energien attraktiver gegenüber anderen Standorten werden und es dann zu Standortverlagerungen kommt - insbesondere im Bereich der energieintensiven Industrie.
In dem vorliegenden Artikel greifen die Autoren diese möglichen Verlagerungen industrieller Produktion auf. In diesem Zusammenhang führen sie auch den Begriff "Renewables Pull" ein. Die in bestimmten Regionen der Welt kostengünstig und in großen Mengen verfügbaren erneuerbaren Energien könnten nach Ansicht der Autoren künftig eine Sogwirkung auslösen und bestimmte Teile der industriellen Produktion anziehen - auch Pull-Effekt genannt.
The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations.
New options are needed to reduce the impact of motor vehicles on climate change and declining fossil fuel resources. Cars which are fueled by hydrogen could be a sustainable method of transportation if suitable technologies can be devised to produce hydrogen in an environmentally benign manner along with the provision of the necessary fueling infrastructure. This paper assesses size, space, and cost requirements of bioreactors as a decentralized option to supply hydrogen powered cars with biohydrogen produced from algae or cyanobacteria on a theoretical basis. Decentralized supply of biohydrogen could help to reduce the problems that hydrogen cars face regarding market penetration. A feasibility study for decentralized biohydrogen production is conducted, taking the quantity of hydrogen which is needed to fuel current hydrogen cars into account. While this technology is, in theory, feasible, sizes, and costs of such reactors are currently too high for widespread adoption. Thus, more R&D is needed to close the gap and to approach marketability.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
Unter den Stichworten "Sektorenkopplung" und "Power-to-X" werden derzeit viele Möglichkeiten der direkten und indirekten Elektrifizierung großer Teile der Endenergienachfrage intensiv diskutiert. In diesem Zusammenhang hat die Diskussion um Wasserstoff als Endenergieträger sowie als Feedstock für die Herstellung von synthetischen Kraftstoffen und chemischen Grundstoffen zuletzt stark an Bedeutung gewonnen. Insbesondere der klimaneutrale Umbau der Grundstoffindustrien und hier vor allem der Grundstoffchemie und der Stahlindustrie würde bedeutende Mengen an grünem Wasserstoff benötigen, die räumlich stark auf die großen Industriekerne fokussiert wären. Ein zeitnaher Einstieg in die Schaffung entsprechender Erzeugungskapazitäten und Infrastrukturen könnte dazu führen, dass Wasserstoff - neben erneuerbaren Energien und Energieeffizienz - zum dritten Standbein der Energiewende avanciert.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
The Paris Agreement calls on all nations to pursue efforts to contribute to limiting the global temperature increase to 1.5 °C above pre-industrial levels. However, due to limited global, regional and country-specific analysis of highly ambitious GHG mitigation pathways, there is currently a lack of knowledge about the transformational changes needed in the coming decades to reach this target. Through a meta-analysis of mitigation scenarios for Germany, this article aims to contribute to an improved understanding of the changes needed in the energy system of an industrialized country. Differentiation among six key long-term energy system decarbonization strategies is suggested, and an analysis is presented of how these strategies will be pursued until 2050 in selected technologically detailed energy scenarios for Germany. The findings show, that certain strategies, including the widespread use of electricity-derived synthetic fuels in end-use sectors as well as behavioral changes, are typically applied to a greater extent in mitigation scenarios aiming at high GHG emission reductions compared to more moderate mitigation scenarios. The analysis also highlights that the pace of historical changes observed in Germany between 2000 and 2015 is clearly insufficient to adequately contribute to not only the 1.5 °C target, but also the 2 °C long-term global target.