Refine
Year of Publication
Document Type
- Report (25)
- Conference Object (20)
- Peer-Reviewed Article (18)
- Part of a Book (10)
- Working Paper (5)
- Contribution to Periodical (3)
- Periodical Part (1)
Language
- English (82) (remove)
Division
- Zukünftige Energie- und Industriesysteme (82) (remove)
The Port of Rotterdam is an important industrial cluster mainly comprising of oil refining, chemical manufacturing and power and steam generation. In 2015, the area accounted for 18 % of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the port's economy is heavily exposed to future global and EU decarbonization policies, as the bulk of its activities focuses on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority, our paper explores possible pathways of how the industrial cluster can keep its strong market position in Europe and still reduce its CO2 emissions by 98 % by 2050. The "Biomass and CCS" scenario assumes that large amounts of biomass can be supplied sustainably and will be used in the port for power generation as well as for feedstock for refineries and the chemical industry. Fischer-Tropsch fuel generation plays an important role in this scenario, allowing the port to become a key cluster for the production of synthetic fuels and feedstocks in Western Europe. The "Closed Carbon Cycle" scenario assumes that renewables-based electricity will be used at the port to supply heat and hydrogen for the synthetic generation of feedstock for the chemical industry. The carbon required for the chemicals will stem from recycled waste. Technologies particularly needed in this scenario are water electrolysis and gasification or pyrolysis to capture carbon from waste, as well as technologies for the production of base chemicals from syngas. The paper compares both scenarios with regard to their respective technological choices and infrastructural changes. The scenarios’ particular opportunities and challenges are also discussed. Using possible future pathways of a major European petrochemical cluster as an example, the paper illustrates options for deep decarbonisation of energy intensive industries in the EU and beyond.
Purpose - Iran as an energy-rich country faces many challenges in the optimal utilization of its vast resources. High rates of population and economic growth, a generous subsidies program, and poor resource management have contributed to rapidly growing energy consumption and high energy intensity over the past decades. The continuing trend of rising energy consumption will bring about new challenges as it will shrink oil export revenues, restraining economic activities. This calls for a study to explore alternative scenarios for the utilization of energy resources in Iran. The purpose of this paper is to model demand for energy in Iran and develop two business-as-usual and efficiency scenarios for the period 2005-2030.
Design/methodology/approach - The authors use a techno-economic or end-use approach to model energy demand in Iran for different types of energy uses and energy carriers in all sectors of the economy and forecast it under two scenarios: business as usual (BAU) and efficiency.
Findings - Iran has a huge potential for energy savings. Specifically, under the efficiency scenario, Iran will be able to reduce its energy consumption 40 percent by 2030. The energy intensity can also be reduced by about 60 percent to a level lower than the world average today.
Originality/value - The paper presents a comprehensive study that models the Iranian energy demand in different sectors of the economy, using data at different aggregation levels and a techno-economic end-use approach to illuminate the future of energy demand under alternative scenarios.
The need for an "Energy Roadmap 2050" triggered a multitude of studies that were conducted between 2009 and 2011, which again contained a multitude of decarbonisation scenarios, which achieve the EU's long-term emission mitigation target of reducing greenhouse gas emissions by at least 80% until 2050 (relative to 1990 emissions). The variety of important analysis is difficult to compare and utilize for specific and timely policy decisions. Thus the Smart Energy for Europe Platform (SEFEP) has commissioned a comparative study of relevant energy scenario studies for Europe. The findings of this comparative study are summarized here briefly.
Several low-carbon energy roadmaps and scenarios have recently been published by the European Commission and the International Energy Agency (IEA) as well as by various stakeholders such as Eurelectric, ECF and Greenpeace. Discussions of these studies mainly focus on technology options available on the electricity supply side and mostly omit the significant challenges that all of the scenarios impose on the energy demand side.
A comparison of 5 decarbonisation scenarios from 4 of the most relevant recent scenario studies for the EU shows that all of them imply significant efficiency improvements in traditional appliances, usually well above levels historically observed over longer periods of time. At the same time they assume substantial electrification of transportation and heating. The scenarios suggest that both of these challenges need to be tackled successfully for decarbonising the energy system.
With shares of renewable electricity reaching at least 60 % of supply in 2050 in almost all of the decarbonisation scenarios, the adaptation of demand to variable supply becomes increasingly important. This aspect of demand side management should therefore be part of any policy mix aiming for a low-carbon power system.
Based on a quantitative analysis of 5 decarbonisation scenarios and a comparison with historical evidence we derive the (implicit) new challenges posed by the current low-carbon roadmaps and develop recommendations for energy policy on the electricity demand side.
The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels.
The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of "re-industrialisation" for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry - such as electrification, hydrogen-based processes for steel, alternative cements or CCS - if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.
Preventing the worst consequences of climate change would require that GHG emissions be reduced to levels near zero by the middle of the century. To respond to such a daunting challenge, we need to rethink and redesign the currently highly energy-dependent infrastructures of industrial societies and particularly the urban infrastructures to become low- or even zero-carbon cities. Sustainable urban infrastructures need technology. In this paper focused on Western European Cities, we discuss a wide set of technologies in the fields of building, energy and transport infrastructures that can significantly contribute to a reduction of energy and/or GHG emissions and are already available or are in the pipeline. Based on the review of a recent study for the city of Munich, we then present how a mix of these technologies could reduce CO2-emissions by up to 90% for the metropolis of 1.3 million inhabitants and that this strategy could be economically attractive despite a high initial investment.
All of the residential buildings of a city like Munich could be entirely redesigned for EUR 200 per inhabitant annually, which is about one third of an average annual natural gas bill.
The Greens / European Free Alliance Group of the European Parliament contracted Wuppertal Institute in collaboration with Energiaklub to develop scientifically sound, comprehensive, alternative, and sustainable long term energy scenarios for Hungary, which cover potential development paths till 2030 and 2050. The scenarios developed deliver information about the costs and long-term effects of different energy choices for Hungary as well as credible information on potential benefits of greening the energy mix. As a result, the study aims to provide policy makers with better evidence for making informed, prudent and forward-thinking decisions in this field.