Refine
Year of Publication
Document Type
- Report (59)
- Peer-Reviewed Article (32)
- Conference Object (26)
- Part of a Book (20)
- Contribution to Periodical (20)
- Working Paper (8)
- Book (1)
- Doctoral Thesis (1)
- Lecture (1)
- Periodical Part (1)
Division
- Zukünftige Energie- und Industriesysteme (169) (remove)
Target 2020 : policies and measures to reduce greenhouse gas emissions in the EU ; final report
(2005)
Under the framework of the UN framework convention on climate change (UNFCCC) and its Kyoto Protocol the targets and strategies for the second and third commitment period ("post-2012") have to be discussed and set in the near future. Regarding the substantial emission reductions that have to be shouldered by the industrialized nations over the next two decades it is evident that all available potentials to mitigate greenhouse gas (GHG) emissions have to be harnessed and that energy efficiency has to play a key role.
To substantiate this we developed a comprehensive scenario analysis of the EU 25s energy system and other greenhouse gas emissions until 2020. Our analysis shows which key potentials to mitigate greenhouse gas emissions are available, by which policies and measures they are attainable
and which will be benefits of greenhouse gas mitigation measures.
By this analysis we show the mayor role of energy efficiency in all sectors and all member states. We demonstrate that a reduction of EU 25 greenhouse gas emissions by more than 30 % by 2020 is feasible, reasonable and - to a large extent - cost effective. We also develop a comprehensive policy package necessary to achieve ambitious Post-Kyoto targets.
The scenario analysis results in a clear identification of the needed strategies, policies and measures and especially the relevance of energy efficiency to achieve the necessary ambitious greenhouse gas reduction targets. It also clearly shows the costs and the benefits of such a policy compared to a business as usual case.
Mit Inkrafttreten des Kyoto-Protokolls am 16.2.2005 gelten für Deutschland und die meisten anderen Industrieländer völkerrechtlich bindende Minderungsziele für die 6 im Kyoto-Protokoll erfassten Treibhausgase. Damit erlangt eine durchaus kontrovers diskutierte Klimaschutzstrategie, die auf eine stärkere Umstellung der Energienutzung von Öl und Kohle auf mehr Erdgas setzt, zusätzlich an Bedeutung. Der nachfolgende Beitrag setzt sich mit der Klimabilanz des Erdgases unter Berücksichtigung der gesamten Prozesskette auseinander. Insbesondere werden neue Messergebnisse aus Russland dargestellt (Wuppertal Institut 2004), die zeigen, dass die dem Export von russischem Erdgas nach Deutschland zuzuordnenden indirekten Emissionen nur etwa ein Viertel der bei der Erdgasverbrennung entstehenden direkten Emissionen betragen. Damit bleibt Erdgas auch unter Berücksichtigung der indirekten Emissionen in Russland der fossile Energieträger mit den mit Abstand geringsten Treibhausgasemissionen.
Vorteil für Erdgas
(2005)
Using natural gas for fuel releases less carbon dioxide per unit of energy produced than burning oil or coal, but its production and transport are accompanied by emissions of methane, which is a much more potent greenhouse gas than carbon dioxide in the short term. This calls into question whether climate forcing could be reduced by switching from coal and oil to natural gas. We have made measurements in Russia along the world's largest gas-transport system and find that methane leakage is in the region of 1.4%, which is considerably less than expected and comparable to that from systems in the United States. Our calculations indicate that using natural gas in preference to other fossil fuels could be useful in the short term for mitigating climate change.
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.
With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.