Refine
Year of Publication
Document Type
- Report (30)
- Contribution to Periodical (16)
- Peer-Reviewed Article (12)
- Part of a Book (9)
- Conference Object (4)
- Working Paper (3)
- Book (1)
- Doctoral Thesis (1)
- Lecture (1)
Language
- German (77) (remove)
Division
- Zukünftige Energie- und Industriesysteme (77) (remove)
Treibhausgasneutralität in Deutschland bis 2045 : ein Szenario aus dem Projekt SCI4climate.NRW
(2023)
Die klimapolitischen Ziele Deutschlands und der EU machen eine sehr schnelle und tiefgreifende Transformation sowohl der Energieversorgung als auch der energieverbrauchenden Sektoren notwendig. Diese Transformationsherausforderung betrifft nicht zuletzt die energieintensive Industrie in Deutschland, die vor grundlegenden technologischen Veränderungen wichtiger Produktionsprozesse steht. Die Herausforderungen für die Industrie werden durch die aktuelle Energiekrise weiter verschärft.
Vor diesem Hintergrund stellt das hier vorgestellte Klimaschutzszenario "SCI4climate.NRW-Klimaneutralität" (S4C-KN), das im Rahmen des vom Land NRW finanzierten Forschungsprojekts "SCI4climate.NRW" entwickelt wurde, die möglichen künftigen Entwicklungen in der energieintensiven Industrie in den Mittelpunkt der Analyse. Das Szenario analysiert diese Entwicklungen im Kontext eines gesamtwirtschaftlichen Transformationspfads hin zu einem klimaneutralen Deutschland im Jahr 2045.
Das Ziel der Klimaneutralität bis zum Jahr 2045 stellt nicht zuletzt den Industriesektor vor erhebliche Herausforderungen. Für diesen Sektor werden teilweise sehr unterschiedliche Entwicklungspfade in Richtung Klimaneutralität beschrieben, wie ein Blick in verschiedene aktuelle Szenariostudien zeigt. Dennoch gibt es auch im Industriesektor bestimmte Emissionsminderungsstrategien, die in allen vorliegenden Szenarien als unverzichtbar angesehen werden.
Bewegende Energie - das charakterisiert den beruflichen und akademischen Lebensweg von Peter Hennicke. Seine bis heute andauernde Arbeit zur Energiewende hat vieles in Bewegung gebracht. Er hat den Begriff "Energiewende" zwar nicht erfunden, aber maßgeblich mitgeprägt. Weil ihn dieses Ziel so erfüllt und sein Engagement so voller positiver Energie ist, begeistert und bewegt er die Menschen, die mit ihm zusammenwirken, und häufig auch diejenigen, die seinen Ideen zunächst skeptisch oder kritisch gegenüberstehen.
Die Autorinnen und Autoren dieses Buches stellen wesentliche Ideen und wissenschaftliche Konzepte von Peter Hennicke entlang ihrer beruflichen und wissenschaftlichen Aktivitäten vor. Damit gelingt es ihnen, sowohl 40 Jahre Energiewende und Transformation zur Nachhaltigkeit nachzuzeichnen als auch Impulse und eine Agenda für die zweite Phase der Energiewende zu setzen.
Deutschland soll bis 2045 klimaneutral werden. So steht es im verschärften Klimaschutzgesetz, das im Juni 2021 vom Bundestag verabschiedet wurde. Die deutsche Industrie verursacht derzeit knapp ein Viertel der Treibhausgasemissionen, etwa ein Drittel davon entfällt auf die Eisen- und Stahlproduktion. Um das Klimaziel zu erreichen, müssen somit große CO2-Einsparungen in der Stahlindustrie realisiert werden.
Der Diskurs um die Transformation des Energiesystems ist in den vergangenen Jahren vermehrt über wissenschaftlich fundierte Szenarien geführt worden, die aus verschiedenen gesellschaftlichen Perspektiven in Auftrag gegeben wurden. Der Vergleich von vier im Jahr 2021 erschienenen Studien zeigt auf, wo weitgehende Einigkeit über die erforderlichen Strategien zur Erreichung der Klimaneutralität bis 2045 besteht, und wo die größten Differenzen liegen.
Minderungspfade
(2021)
Damit sich die weltweit zunehmend ambitionierten Klimaschutzziele erreichen lassen, müssen auch im Industriesektor weitgehende Emissionsreduktionen innerhalb weniger Jahrzehnte realisiert werden. Expertinnen und Experten sind sich einig, dass dies nicht ohne den Umstieg von fossilen auf erneuerbare Energieträger und Rohmaterialien - sogenannte Feedstocks - umsetzbar ist. Im Zuge der verstärkten Nutzung dieser grünen Energieträger ist denkbar, dass sich deren Verfügbarkeit und Kosten zu immer wichtigeren Standortfaktoren für die Produktion industrieller Güter entwickeln werden. Dies könnte dazu führen, dass zukünftig Standorte mit kostengünstiger Verfügbarkeit von erneuerbaren Energien attraktiver gegenüber anderen Standorten werden und es dann zu Standortverlagerungen kommt - insbesondere im Bereich der energieintensiven Industrie.
In dem vorliegenden Artikel greifen die Autoren diese möglichen Verlagerungen industrieller Produktion auf. In diesem Zusammenhang führen sie auch den Begriff "Renewables Pull" ein. Die in bestimmten Regionen der Welt kostengünstig und in großen Mengen verfügbaren erneuerbaren Energien könnten nach Ansicht der Autoren künftig eine Sogwirkung auslösen und bestimmte Teile der industriellen Produktion anziehen - auch Pull-Effekt genannt.
Die in Paris Ende 2015 beschlossene Vereinbarung gibt das Ziel vor, die Erderwärmung bis 2100 auf deutlich unter 2 Grad Celsius zu begrenzen, möglichst aber auf unter 1,5 Grad Celsius. Die vorliegende Studie setzt sich mit der Frage von Fridays for Future Deutschland auseinander, welche Dimension von Veränderungen im deutschen Energiesystem erforderlich wären, um einen angemessenen Beitrag für das Erreichen der 1,5-Grad-Grenze leisten zu können. Nach Abschätzung des Weltklimarates, dem Intergovernmental Panel on Climate Change (IPCC), lassen sich mit dieser Temperaturgrenze die Risiken und Auswirkungen des Klimawandels gegenüber einer stärkeren Erderwärmung erheblich verringern.
Die Autorinnen und Autoren haben dabei den Budgetansatz des Sachverständigenrats für Umweltfragen (SRU) der Bundesregierung zugrunde gelegt. Um das 1,5-Grad-Ziel mit einer Wahrscheinlichkeit von 50 Prozent zu erreichen, ist das Restbudget an damit verträglichen Treibhausgasemissionen eng begrenzt. Für Deutschland bleibt gemäß des Sachverständigenrats für Umweltfragen ab dem Jahr 2020 noch ein Restbudget von 4,2 Gigatonnen CO2. Dabei geht der Sachverständigenrat von der Annahme aus, dass auf globaler Ebene jedem Menschen für die Zukunft ein gleiches Pro-Kopf-Emissionsrecht zugestanden werden soll. Mit dieser Klimaschutzvorgabe geht er deutlich weiter als die aktuellen politischen Vorgaben der Europäischen Union und der Bundesregierung, die diese für sich aus den Pariser Klimaschutzvereinbarungen ableiten.
Die vom SRU formulierte Zielmarke lässt sich einhalten, wenn das Energiesystem (Energiewirtschaft, Industrie, Verkehr und Gebäudewärme) bis zum Jahr 2035 CO2-neutral aufgestellt wird und die Emissionen insbesondere in den nächsten Jahren bereits überproportional stark gesenkt werden können.
Die vorliegende Studie untersucht die technische und in gewissem Maße auch die ökonomische Machbarkeit einer Transformation zur CO2-Neutralität bis 2035. Ob sich dieses Ziel jedoch tatsächlich realisieren lässt, hängt auch maßgeblich von der gesellschaftlichen Bereitschaft und einem massiven politischen Fokus auf die notwendige Transformation ab. Die Studie gibt somit Aufschluss darüber, inwiefern es grundlegende technologische und wirtschaftliche Hindernisse für die CO2-Neutralität 2035 gibt; nicht jedoch ob die Umsetzung realpolitisch tatsächlich gelingen kann bzw. was dafür im Einzelnen getan werden muss. Neben den technischen und ökonomischen Herausforderungen einer Transformation hin zu CO2-Neutralität bestehen zentrale Herausforderungen auch in institutioneller und kultureller Hinsicht, zum Beispiel bei Themen wie der Akzeptanz für einen starken Ausbau von Erneuerbaren-Energien-Anlagen und von Energieinfrastrukturen oder hinsichtlich der Notwendigkeit eines deutlich veränderten Verkehrsverhaltens.
Die Grundstoffindustrie steht derzeit vor großen Herausforderungen. Die Unternehmen müssen die akuten dramatischen Folgen der Coronakrise bewältigen, aber auch bereits in den nächsten Jahren in neue klimafreundliche Technologien investieren, um das Ziel einer klimaneutralen Wirtschaft im Jahr 2050 zu erreichen. Im Fachforum Energieintensive Grundstoffindustrie beim Grünen Wirtschaftsdialog diskutierten Akteure aus Wirtschaft, Politik und Wissenschaft, welche politischen Instrumente die Transformation der Industrie unterstützen und die notwendigen Investitionen ermöglichen können. Vom Wuppertal Institut wurde für das Fachforum ein Scoping Paper erstellt, welches den Stand der aktuellen Fachdiskussion zu zentralen Politikinstrumenten zusammenfasst und die wichtigsten offenen Ausgestaltungsfragen diskutiert. Das Papier wurde im Austausch mit den Akteuren im Fachforum entwickelt und in mehreren Sitzungen des Forums vorgestellt und diskutiert. Inhaltlicher Schwerpunkt sind Instrumente für faire internationale Wettbewerbsbedingungen, Carbon Contracts for Difference, und Ansätze für Energiepreisreformen.
Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienzsteigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbsumfeld behalten?
Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen.
Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
Die Europäische Union (EU) hat erkannt, dass das Ziel der Klimaneutralität bis 2050 ein zentraler Innovations- und Wachstumsmotor für Industrie und Wirtschaft in der EU sein kann. Neben großen Chancen stellt dies die europäische Wirtschaft und überwiegend die besonders emissionsintensiven sowie im international starkem Wettbewerb stehenden Grundstoffindustrien auch vor erhebliche Herausforderungen.
Eine integrierte Klima- und Industriestrategie ist für den Klimaschutz von zentraler Bedeutung, da auf die Produktion von Stahl, Zement, Grundstoffchemikalien, Glas, Papier und anderen Materialien in der EU und weltweit rund 20 Prozent der gesamten Treibhausgasemissionen entfallen. Auch in einer treibhausgasneutralen Zukunft kann auf diese Materialien nicht verzichten werden. Zugleich ist die emissionsfreie Herstellung der Materialien technologisch sowie mit Blick auf die dafür erforderlichen Infrastrukturen besonders herausfordernd. Dies gilt vor allem für die Frage woher die hohen benötigten Mengen an grüner Energie - insbesondere Strom und Wasserstoff - zu wettbewerbsfähigen Preisen kommen sollen. Analysen zeigen, dass trotz erheblicher Kosten bei der Prozessumstellung die Kosten der Transformation der Grundstoffindustrie für die Gesellschaft insgesamt tragbar sind. Denn bezogen auf die Endprodukte betragen die Mehrkosten meist nur wenige Prozentpunkte; die Preise von Rohstahl oder Zement dagegen würden sich zwischen einem Drittel und 100 Prozent verteuern. Da fast alle Grundstoffhersteller in starker Weltmarktkonkurrenz stehen, können sie die Investitionen in eine klimaneutrale Produktion und die benötigten Energieinfrastrukturen aber nicht ohne Unterstützung tragen.
Das vorliegende Papier skizziert ein integriertes Klima-Industriepolitikpaket, das der EU ermöglichen kann, die bestehende technologische Führung in vielen dieser Industrien zielgerichtet zum Aufbau einer treibhausgasneutralen Grundstoffindustrie zu nutzen.
Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden.
Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert.
Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
Unter den Stichworten "Sektorenkopplung" und "Power-to-X" werden derzeit viele Möglichkeiten der direkten und indirekten Elektrifizierung großer Teile der Endenergienachfrage intensiv diskutiert. In diesem Zusammenhang hat die Diskussion um Wasserstoff als Endenergieträger sowie als Feedstock für die Herstellung von synthetischen Kraftstoffen und chemischen Grundstoffen zuletzt stark an Bedeutung gewonnen. Insbesondere der klimaneutrale Umbau der Grundstoffindustrien und hier vor allem der Grundstoffchemie und der Stahlindustrie würde bedeutende Mengen an grünem Wasserstoff benötigen, die räumlich stark auf die großen Industriekerne fokussiert wären. Ein zeitnaher Einstieg in die Schaffung entsprechender Erzeugungskapazitäten und Infrastrukturen könnte dazu führen, dass Wasserstoff - neben erneuerbaren Energien und Energieeffizienz - zum dritten Standbein der Energiewende avanciert.
Am 26. Januar 2019 hat die Kommission "Wachstum, Strukturwandel und Beschäftigung" beschlossen, dass in Deutschland bis spätestens 2038 keine Kohlekraftwerke mehr betrieben werden sollen. Das Wuppertal Institut nimmt in diesem Papier Stellung zu den Ergebnissen der Kommission und gibt Empfehlungen für die nun notwendigen Schritte für die Klima- und Innovationspolitik in Europa, Deutschland und Nordrhein-Westfalen.
Weltweit trägt die Industrie direkt und indirekt etwa über ihren Bezug von Strom und Wärme rund 30 bis 40 Prozent zu den Treibhausgasemissionen bei. Auch in Deutschland liegt ihr Beitrag in einer ähnlichen Größenordnung1. Dabei sind insbesondere die Grundstoffindustrien (Stahl, Zement, Grundstoffchemie, Glas, Aluminium, Papier und andere) besonders energie- und emissionsintensiv. Gleichzeitig basiert der Energieeinsatz dieser Industrien bisher noch überwiegend auf fossilen Energien (und Müll). Zu den energiebedingten Emissionen kommen prozessbedingte Emissionen hinzu, die sich bei den heute üblichen Verfahren selbst bei Einsatz vollständig "grüner" Energien nicht vermeiden lassen. Grundstoffindustrien stellen Materialien für die Herstellung und Verarbeitung von Produkten zur Verfügung. Sie sind daher kein Selbstzweck, sondern tragen letztlich damit dazu bei, vielfältige Bedürfnisse abzudecken.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
Nach den G7-Beschlüssen von Elmau und dem Klimaabkommen von Paris im Jahr 2015 ist das Thema der langfristigen Dekarbonisierung der Energiesysteme der Industrieländer in den Vordergrund der politischen und wissenschaftlichen Diskussion gerückt. Japan und Deutschland stehen als führende Industrienationen vor ähnlichen Herausforderungen, gleichzeitig können sich aber auch für beide Länder wirtschaftliche Entwicklungschancen aus der Dekarbonisierung ergeben. Aus diesem Grund bietet sich eine verstärkte Kooperation und die Initiierung gegenseitiger Lernprozesse besonders an. Die vorliegende Metaanalyse ambitionierter Klimaschutzszenarien für Japan und Deutschland stellt mit der Diskussion von langfristigen Dekarbonisierungsstrategien in beiden Ländern einen ersten Schritt in diese Richtung dar.
Die quantitative Analyse hat gezeigt, dass die Untersuchungsschwerpunkte der Szenarien - sowohl für Deutschland als auch für Japan - vielfach auf den THG-Emissionen des Energiesystems liegen. Die THG-Emissionen anderer Sektoren werden seltener und wenn, dann oft in geringerer Detailtiefe berücksichtigt. Der Vergleich von ambitionierten Dekarbonisierungsszenarien mit THG-Minderungszielen von 80 bis 100 Prozent zeigt in vielen Bereichen für Japan und Deutschland tendenziell recht ähnliche Entwicklungen und Strategien auf. Es wird deutlich, dass in beiden Ländern erhebliche Änderungen insbesondere im Energiesystem notwendig sind, um die anvisierten mittel- und langfristigen THG-Minderungsziele zu erreichen. Es werden ähnliche Annahmen zu Bevölkerungsentwicklung und Wirtschaftsentwicklung getroffen und es werden vergleichbare Entwicklungstrends bei vielen Ausprägungen des Energiesystems deutlich. Unterschiede zwischen den deutschen und japanischen Szenarien sowie zwischen den Szenarien der einzelnen Länder bestehen hingegen vor allem in Bezug auf Geschwindigkeit, Umfang und die Zusammensetzung der Strategieelemente.
Die voranschreitende Umstellung des Energiesystems von einer "additiven Rolle" regenerativer Energien hin zu deren Dominanz wirft zahlreiche Fragestelllungen auf, für deren Beantwortung in zunehmendem Maße Modellierungsansätze gewählt werden. Vor diesem Hintergrund ist in den letzten Jahren eine große Anzahl von modellbasierten Szenarioanalysen des deutschen Energiesystems entstanden. Da sie zum Teil sehr unterschiedliche Ergebnisse erzielen, die nur schwer miteinander vergleichbar sind, erschwert dies die Weiterentwicklung des Zukunftswissens zur Energiewende und auch die gegenseitige Qualitätssicherung der Ergebnisse.
Vor diesem Hintergrund hat das Wuppertal Institut zusammen mit den Partnern Fraunhofer ISE und DLR das RegMex-Projekt durchgeführt. Ziel des Projektes war zum einen die inhaltliche Weiterentwicklung der Diskussion zur Ausgestaltung der Energiewende. Zum anderen sollte durch den Modellvergleich eine höhere Transparenz der teilnehmenden Modelle erreicht werden, um die Implikationen und Auswirkungen verschiedener Modellansätze besser differenzierten zu können.
Im Modellexperiment 1 wurden für zwei Szenarien (Zielszenario und Ambitioniertes Szenario) das Gesamtsystem mit Hilfe von drei Energiesystemmodellen und im Modellexperiment 2 das Stromsystem und flexible Sektorenkopplung mit Hilfe von vier Stromsystemmodellen modelliert. In einem weiteren Arbeitspaket wurden "Disruptive Elemente" identifiziert und analysiert, die gravierende Auswirkungen auf das Energiesystem haben können. Die Modellexperimente zeigen klar, dass die Einordnung und Interpretation von Modellergebnissen nicht losgelöst von den Modellen und deren methodischen Unterschieden erfolgen darf.