To combat climate change, it is anticipated that in the coming years countries around the world will adopt more stringent policies to reduce greenhouse gas emissions and increase the use of clean energy sources. These policies will also affect the industry sector, which means that industrial production is likely to progressively shift from CO2-emitting fossil fuel sources to renewable energy sources. As a result, a region's renewable energy resources could become an increasingly important factor in determining where energy-intensive industries locate their production. We refer to this pull factor as the "renewables pull" effect. Renewables pull could lead to the relocation of some industrial production as a consequence of regional differences in the marginal cost of renewable energy sources. In this paper, we introduce the concept of renewables pull and explain why its importance is likely to increase in the future. Using the examples of direct reduced iron (DRI) and ammonia production, we find that the future costs of climate-neutral production of certain products is likely to vary considerably between regions with different renewable energy resources. However, we also identify the fact that many other factors in addition to energy costs determine the decisions that companies make in term of location, leaving room for further research to better understand the future relevance of renewables pull.
Deutschland soll bis 2045 klimaneutral werden. So steht es im verschärften Klimaschutzgesetz, das im Juni 2021 vom Bundestag verabschiedet wurde. Die deutsche Industrie verursacht derzeit knapp ein Viertel der Treibhausgasemissionen, etwa ein Drittel davon entfällt auf die Eisen- und Stahlproduktion. Um das Klimaziel zu erreichen, müssen somit große CO2-Einsparungen in der Stahlindustrie realisiert werden.
Der Diskurs um die Transformation des Energiesystems ist in den vergangenen Jahren vermehrt über wissenschaftlich fundierte Szenarien geführt worden, die aus verschiedenen gesellschaftlichen Perspektiven in Auftrag gegeben wurden. Der Vergleich von vier im Jahr 2021 erschienenen Studien zeigt auf, wo weitgehende Einigkeit über die erforderlichen Strategien zur Erreichung der Klimaneutralität bis 2045 besteht, und wo die größten Differenzen liegen.
The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations.
Damit sich die weltweit zunehmend ambitionierten Klimaschutzziele erreichen lassen, müssen auch im Industriesektor weitgehende Emissionsreduktionen innerhalb weniger Jahrzehnte realisiert werden. Expertinnen und Experten sind sich einig, dass dies nicht ohne den Umstieg von fossilen auf erneuerbare Energieträger und Rohmaterialien - sogenannte Feedstocks - umsetzbar ist. Im Zuge der verstärkten Nutzung dieser grünen Energieträger ist denkbar, dass sich deren Verfügbarkeit und Kosten zu immer wichtigeren Standortfaktoren für die Produktion industrieller Güter entwickeln werden. Dies könnte dazu führen, dass zukünftig Standorte mit kostengünstiger Verfügbarkeit von erneuerbaren Energien attraktiver gegenüber anderen Standorten werden und es dann zu Standortverlagerungen kommt - insbesondere im Bereich der energieintensiven Industrie.
In dem vorliegenden Artikel greifen die Autoren diese möglichen Verlagerungen industrieller Produktion auf. In diesem Zusammenhang führen sie auch den Begriff "Renewables Pull" ein. Die in bestimmten Regionen der Welt kostengünstig und in großen Mengen verfügbaren erneuerbaren Energien könnten nach Ansicht der Autoren künftig eine Sogwirkung auslösen und bestimmte Teile der industriellen Produktion anziehen - auch Pull-Effekt genannt.
New options are needed to reduce the impact of motor vehicles on climate change and declining fossil fuel resources. Cars which are fueled by hydrogen could be a sustainable method of transportation if suitable technologies can be devised to produce hydrogen in an environmentally benign manner along with the provision of the necessary fueling infrastructure. This paper assesses size, space, and cost requirements of bioreactors as a decentralized option to supply hydrogen powered cars with biohydrogen produced from algae or cyanobacteria on a theoretical basis. Decentralized supply of biohydrogen could help to reduce the problems that hydrogen cars face regarding market penetration. A feasibility study for decentralized biohydrogen production is conducted, taking the quantity of hydrogen which is needed to fuel current hydrogen cars into account. While this technology is, in theory, feasible, sizes, and costs of such reactors are currently too high for widespread adoption. Thus, more R&D is needed to close the gap and to approach marketability.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
Unter den Stichworten "Sektorenkopplung" und "Power-to-X" werden derzeit viele Möglichkeiten der direkten und indirekten Elektrifizierung großer Teile der Endenergienachfrage intensiv diskutiert. In diesem Zusammenhang hat die Diskussion um Wasserstoff als Endenergieträger sowie als Feedstock für die Herstellung von synthetischen Kraftstoffen und chemischen Grundstoffen zuletzt stark an Bedeutung gewonnen. Insbesondere der klimaneutrale Umbau der Grundstoffindustrien und hier vor allem der Grundstoffchemie und der Stahlindustrie würde bedeutende Mengen an grünem Wasserstoff benötigen, die räumlich stark auf die großen Industriekerne fokussiert wären. Ein zeitnaher Einstieg in die Schaffung entsprechender Erzeugungskapazitäten und Infrastrukturen könnte dazu führen, dass Wasserstoff - neben erneuerbaren Energien und Energieeffizienz - zum dritten Standbein der Energiewende avanciert.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
The Paris Agreement calls on all nations to pursue efforts to contribute to limiting the global temperature increase to 1.5 °C above pre-industrial levels. However, due to limited global, regional and country-specific analysis of highly ambitious GHG mitigation pathways, there is currently a lack of knowledge about the transformational changes needed in the coming decades to reach this target. Through a meta-analysis of mitigation scenarios for Germany, this article aims to contribute to an improved understanding of the changes needed in the energy system of an industrialized country. Differentiation among six key long-term energy system decarbonization strategies is suggested, and an analysis is presented of how these strategies will be pursued until 2050 in selected technologically detailed energy scenarios for Germany. The findings show, that certain strategies, including the widespread use of electricity-derived synthetic fuels in end-use sectors as well as behavioral changes, are typically applied to a greater extent in mitigation scenarios aiming at high GHG emission reductions compared to more moderate mitigation scenarios. The analysis also highlights that the pace of historical changes observed in Germany between 2000 and 2015 is clearly insufficient to adequately contribute to not only the 1.5 °C target, but also the 2 °C long-term global target.
The production of commodities by energy-intensive industry is responsible for 1/3 of annual global greenhouse gas (GHG) emissions. The climate goal of the Paris Agreement, to hold the increase in the global average temperature to well below 2 °C above pre-industrial levels while pursuing efforts to limit the temperature increase to 1.5 °C, requires global GHG emissions reach net-zero and probably negative by 2055-2080. Given the average economic lifetime of industrial facilities is 20 years or more, this indicates all new investment must be net-zero emitting by 2035-2060 or be compensated by negative emissions to guarantee GHG-neutrality. We argue, based on a sample portfolio of emerging and near-commercial technologies for each sector (largely based on zero carbon electricity & heat sources, biomass and carbon capture, and catalogued in an accompanying database), that reducing energy-intensive industrial GHG emissions to Paris Agreement compatible levels may not only be technically possible, but can be achieved with sufficient prioritization and policy effort. We then review policy options to drive innovation and investment in these technologies. From this we synthesize a preliminary integrated strategy for a managed transition with minimum stranded assets, unemployment, and social trauma that recognizes the competitive and globally traded nature of commodity production. The strategy includes: an initial policy commitment followed by a national and sectoral stakeholder driven pathway process to build commitment and identify opportunities based on local zero carbon resources; penetration of near-commercial technologies through increasing valuation of GHG material intensity through GHG pricing or flexible regulations with protection for competitiveness and against carbon leakage; research and demand support for the output of pilot plants, including some combination of guaranteed above-market prices that decline with output and an increasing requirement for low carbon inputs in government procurement; and finally, key supporting institutions.
In October 2014, the European Council agreed on a target of improving overall energy efficiency by at least 27 per cent by 2030. According to the European Council's conclusions, this target should not be translated into nationally binding targets. Nevertheless individual Member States are free to set higher national objectives if desired. However, it is difficult to assess the degree of ambition of a national target because so far not much light has been shed upon the exact size of the untapped efficiency potentials.
This paper provides an in-depth analysis and comparison of existing studies on energy efficiency potentials in the European Union's (EU) Member States by 2030. It includes a structured overview of the results, information on the quality of the available data and suggestions for improvement.
The review shows that comprehensive studies on national energy efficiency potentials are rare and hardly comparable. The existing studies agree on the existence of significant potentials for energy efficiency. Their outcomes, however, vary significantly in terms of national levels. Assuming low policy intensity, energy savings between 10 and 28 per cent could be realised by 2030 compared to a baseline development, in the case of high policy intensity 7-44 per cent. Technical energy efficiency potentials in the different EU Member States are estimated at 14-52 per cent. On average, energy savings of 27 per cent by 2030 appear to be feasible with significant policy effort. We conclude that the deviation in Member States' energy efficiency potentials resulting from different studies represents an indication of the so far poor quality of underlying data. In order to allow for a concretisation of efficiency potential estimates, the comparability and detail of information sources should be improved.
Energy-intensive processing industries (EPIs) produce iron and steel, aluminum, chemicals, cement, glass, and paper and pulp and are responsible for a large share of global greenhouse gas emissions. To meet 2050 emission targets, an accelerated transition towards deep decarbonization is required in these industries. Insights from sociotechnical and innovation systems perspectives are needed to better understand how to steer and facilitate this transition process. The transitions literature has so far, however, not featured EPIs. This paper positions EPIs within the transitions literature by characterizing their sociotechnical and innovation systems in terms of industry structure, innovation strategies, networks, markets and governmental interventions. We subsequently explore how these characteristics may influence the transition to deep decarbonization and identify gaps in the literature from which we formulate an agenda for further transitions research on EPIs and consider policy implications. Furthering this research field would not only enrich discussions on policy for achieving deep decarbonization, but would also develop transitions theory since the distinctive EPI characteristics are likely to yield new patterns in transition dynamics.
The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels.
Die Landesregierung in NRW hat am 14.4.2015 den in einem aufwändigen Stakeholderprozess erstellten Klimaschutzplan vorgestellt. Eines der Ziele war, die Klimaschutzpolitik als langfristige Strukturpolitik zu implementieren und entsprechende Prozesse in die Breite der Gesellschaft zu tragen. Weitere Bundesländer und der Bund selbst haben inzwischen ähnliche Prozesse eingeleitet. In zahlreichen anderen Ländern gibt es Beschlüsse, die in diese Richtung gehen. Eine Übersicht über den Prozess der Planerstellung in NRW und über den Stand der Diskussion in Deutschland verdeutlicht, wie Klimaschutzpläne durch partizipatorische Elemente in der Erstellungsphase mehr Akzeptanz erfahren können.
Nach einer langen Phase der Stabilität ist die Stromwirtschaft in den vergangenen 15 Jahren stark in Bewegung geraten. Mit der Liberalisierung stand zunächst der Wechsel von Gebietsmonopolen hin zu wettbewerblich organisierten Erzeuger- und Verbrauchermärkten an. Derzeit findet ein ganz ähnlicher Umbruch statt, der vom Übergang von konventioneller hin zu erneuerbarer Stromerzeugung gekennzeichnet ist. Aber sind die Paradigmen der einzelnen Phasen miteinander vereinbar und hat jede für sich noch immer ihre Daseinsberechtigung, oder ist hier eine Modifizierung notwendig? Das Strommarktdesign der Zukunft kann nicht auf einem leeren Blatt entworfen, sondern es müssen bestehende Strukturen berücksichtigt werden. Gleichzeitig ist die Frage zu beantworten, ob die Wahl zwischen regulatorischen oder marktbasierten Ansätzen sich auch anhand der mit ihnen möglichen Präzision der Steuerung unterscheidet.
The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of "re-industrialisation" for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry - such as electrification, hydrogen-based processes for steel, alternative cements or CCS - if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.
In recent decades, better data and methods have become available for understanding the complex functioning of cities and their impacts on sustainability. This review synthesizes the recent developments in concepts and methods being used to measure the impacts of cities on environmental sustainability. It differentiates between a dominant trend in research literature that concentrates on the accounting and allocation of greenhouse gas emissions and energy use to cities and a reemergence of studies that focus on the direct and indirect material and resource flows in cities. The methodological approaches reviewed may consider cities as either producers or consumers, and all recognize that urban environmental impacts can be local, regional, or global. As well as giving an overview of the methodological debates, we examine the implications of the different approaches for policy and the challenges these approaches face in their application on the field.
Germany's current efforts to decarbonize its electricity system are analysed. As nuclear power and fossil power plants equipped with carbon capture and storage were ruled out in 2011, renewable electricity generation (RES) together with electricity savings are the primary focus for achieving decarbonization. Germany aims to have RES account for at least 80% of its electricity by 2050. Achieving renewable generation needs strong political support and regulatory provisions for its market integration. Four main technical and regulatory challenges are the maintenance of a steady and efficient expansion of RES, the provision of balancing capacities, the realization of the targeted electricity savings, and the smart adaptation of the transport and distribution grid. An overview of the existing and planned regulatory provisions for decarbonization are described, and some gaps identified, particularly with regard to the overall management of the process, the inclusion of electricity savings and the interference of Germany's decarbonization strategies with neighbouring countries. Policies that both accelerate grid expansion and direct RES expansion should immediately be put in place and can be supported by a targeted mobilization of balancing capacities. Electricity savings are a significant and cost-efficient strategy for low-carbon electricity. Policy relevance: Germany is actively converting its national electricity system towards a fully renewable one. As renewable electricity has reached about a quarter of total consumption, a number of technical and regulatory challenges arise. Current discussions and plans are described for the four main challenges: maintaining and optimizing high investment rates into RES generation technologies, providing balancing capacities, reducing demand, and adapting the grid to the changing needs. Policy recommendations for these four tasks highlight the need to intensify electricity demand reduction and also consider the potential interactions between the German electricity system and its neighbouring countries.
The 2011 Japanese earthquake and tsunami, and the consequent accident at the Fukushima nuclear power plant, have had consequences far beyond Japan itself. Reactions to the accident in three major economies Japan, the UK, and Germany, all of whom were committed to relatively ambitious climate change targets prior to the accident are examined. In Japan and Germany, the accident precipitated a major change of policy direction. In the UK, debate has been muted and there has been essentially no change in energy or climate change policies. The status of the energy and climate change policies in each country prior to the accident is assessed, the responses to the accident are described, and the possible impacts on their positions in the international climate negotiations are analysed. Finally, the three countries' responses are compared and some differences between them observed. Some reasons for their different policy responses are suggested and some themes, common across all countries, are identified. Policy relevance: The attraction of nuclear power has rested on the promise of low-cost electricity, low-carbon energy supply, and enhanced energy independence. The Fukushima accident, which followed the Japanese tsunami of March 2011, has prompted a critical re-appraisal of nuclear power. The responses to Fukushima are assessed for the UK, Germany, and Japan. Before the accident, all three countries considered nuclear as playing a significant part in climate mitigation strategies. Although the UK Government has continued to support nuclear new build following a prompt review of safety arrangements, Japan and Germany have decided to phase out nuclear power, albeit according to different timescales. The factors that explain the different decisions are examined, including patterns of energy demand and supply, the wider political context, institutional arrangements, and public attitudes to risk. The implications for the international climate negotiations are also assessed.
Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law - passed in parliament by a large majority - that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs.
The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO2-emissions and a need for Germany to become a net importer of electricity.
Now - a little more than a year after the phase-out law entered into force - this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation.
The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011.
If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable to gradually reduce fossil fuel generated electricity. Whether the reduction in fossil fuel use will be sufficient to adequately contribute to national greenhouse gas mitigation targets significantly depends on an active policy to promote electricity savings, continuous efforts to increase the use of renewables and a higher share of natural gas (preferably used in combined heat and power plants) in fossil fuel power generation.
Die atompolitische Wende der Bundesregierung hatte zahlreichen Spekulationen und Befürchtungen Raum gegeben. Es wurde gemutmaßt, dass Deutschland zum Nettostromimporteur werden könnte, sollten die Kraftwerke (wie im Sommer 2011 beschlossen) dauerhaft außer Betrieb bleiben. Darüber hinaus nahm man an, dass die in Deutschland entfallende Stromerzeugung durch Kohlekraftwerke oder durch Importe aus französischen oder tschechischen Atomkraftwerken ersetzt würde und dass Strompreise sowie CO2-Emissionen deutlich ansteigen würden. Inzwischen liegen vorläufige Energiebilanzen und Marktdaten für das Jahr 2011 vor, die viele dieser Befürchtungen widerlegen. Der hier vorgenommene Ausblick auf die mögliche Entwicklung in den kommenden Jahren zeigt zudem, dass die Bilanz von 2011 keine Momentaufnahme sein muss, sondern dass der gegenüber 2010 wegfallende Kernenergiestrom - bilanziell gesehen - voraussichtlich bereits ab 2013 allein durch eine erhöhte regenerative Stromerzeugung kompensiert werden kann.
Purpose - Iran as an energy-rich country faces many challenges in the optimal utilization of its vast resources. High rates of population and economic growth, a generous subsidies program, and poor resource management have contributed to rapidly growing energy consumption and high energy intensity over the past decades. The continuing trend of rising energy consumption will bring about new challenges as it will shrink oil export revenues, restraining economic activities. This calls for a study to explore alternative scenarios for the utilization of energy resources in Iran. The purpose of this paper is to model demand for energy in Iran and develop two business-as-usual and efficiency scenarios for the period 2005-2030.
Design/methodology/approach - The authors use a techno-economic or end-use approach to model energy demand in Iran for different types of energy uses and energy carriers in all sectors of the economy and forecast it under two scenarios: business as usual (BAU) and efficiency.
Findings - Iran has a huge potential for energy savings. Specifically, under the efficiency scenario, Iran will be able to reduce its energy consumption 40 percent by 2030. The energy intensity can also be reduced by about 60 percent to a level lower than the world average today.
Originality/value - The paper presents a comprehensive study that models the Iranian energy demand in different sectors of the economy, using data at different aggregation levels and a techno-economic end-use approach to illuminate the future of energy demand under alternative scenarios.
Mit dem Kernenergieunfall im japanischen Fukushima im März 2011 ist die Diskussion über das Für und Wider der Nutzung der Kernenergie für die Stromerzeugung in Deutschland neu entbrannt. Die Frage nach den Auswirkungen eines beschleunigten Ausstiegs aus der Kernenergienutzung auf die Entwicklung der Strompreise in Deutschland bildete in den vergangenen Monaten einen Schwerpunkt der öffentlichen Diskussion. Allerdings halten nicht alle Aussagen, die hierzu veröffentlicht wurden, einer kritischen Analyse stand, was zum Teil auch an zugrunde liegenden politischen Motiven gelegen haben mag. Eine Untersuchung fundierter Studien und ausgewählter Stellungnahmen zeigt, dass sich die befürchteten kurzfristigen Preiseffekte in ü̈berschaubaren Grenzen halten werden.
Preventing the worst consequences of climate change would require that GHG emissions be reduced to levels near zero by the middle of the century. To respond to such a daunting challenge, we need to rethink and redesign the currently highly energy-dependent infrastructures of industrial societies and particularly the urban infrastructures to become low- or even zero-carbon cities. Sustainable urban infrastructures need technology. In this paper focused on Western European Cities, we discuss a wide set of technologies in the fields of building, energy and transport infrastructures that can significantly contribute to a reduction of energy and/or GHG emissions and are already available or are in the pipeline. Based on the review of a recent study for the city of Munich, we then present how a mix of these technologies could reduce CO2-emissions by up to 90% for the metropolis of 1.3 million inhabitants and that this strategy could be economically attractive despite a high initial investment.
All of the residential buildings of a city like Munich could be entirely redesigned for EUR 200 per inhabitant annually, which is about one third of an average annual natural gas bill.
Energy used in buildings is responsible for more than 40% of energy consumption and greenhouse gas (GHG) emissions of the EU and their share in cost-efficient GHG mitigation potentials is estimated to be even higher. In spite of its huge savings potential of up to 80%, achievements are very slow in the building sector and much stronger political action seems to be needed. One important step in this direction has been the recast of the Energy Performance of Buildings Directive (EPBD) in autumn 2009. However, strong national implementation including powerful packages of flanking measures seems to be crucial to really make significant progress in this important field. In order to directly improve political action, we provide a differentiated country-by-country bottom up simulation of residential buildings for the whole EU, Norway, Iceland, Croatia and Liechtenstein. The analysis provides a database of the building stock by construction periods, building types, as well as typical building sizes. It includes a simulation of the thermal quality and costs of the components of the building shell for new buildings as well as the refurbishment of the existing building stock. Based on this differentiated analysis, we show in detail what would be needed to accelerate energy savings in the building sector and provide a more precise estimate of the potentials to be targeted by particular policies. We demonstrate, e.g. that the potential of building codes set via the EPBD would be located mainly in those countries that already have quite stringent codes in place. We show as well the high relevance of accelerating refurbishments and re-investment cycles of buildings. By providing a clear estimate of the full costs related to such a strategy, we highlight a major obstacle to accelerated energy-efficient building renovation and construction.
Hintergrund: Die Bezugsquellen und Transportwege von fossilem Erdgas werden sich in den kommenden beiden Dekaden diversifizieren. Veränderungen der Lieferstruktur, verbunden mit weiteren Transportentfernungen und dem Neubau von Pipelines sowie der verstärkte Einsatz von verflüssigtem Erdgas (LNG - Liquefied Natural Gas) sind zu erwarten. Entsprechend werden sich auch die vorgelagerten Prozessketten und die damit verknüpften THG-Emissionen verändern. Im Sinne einer korrekten und ganzheitlichen Bilanzierung der Lebenszyklusemissionen und weitgehender Treibhausgasminderungsziele, sind die vorgelagerten Emissionen eine nicht zu vernachlässigende Größe. Gleichzeitig wird Biomethan als Beimischung zum fossilen Erdgas an Bedeutung gewinnen. Obwohl seine Verbrennung als klimaneutral gewertet wird, sind die Prozesse zur Herstellung von Biomethan mit Emissionen verbunden.
Die Treibhausgasemissionen (THG) der Vorketten von in der EU eingesetzten Energieträgern werden in der neuen EU-Kraftstoffqualitätsrichtlinie (vom Dez. 2008) reguliert. Ihre Höhe und ihre Entwicklung wird für die klimapolitischen Diskussionen und politische Entscheidungen somit immer wichtiger.
Ziel: Vor dem Hintergrund der angesprochenen Aspekte sollen die zukünftige Entwicklung der Gasversorgung in Deutschland und die Veränderungen der vorgelagerten THG-Emissionen von Erdgas und Biomethan ermittelt werden. In zwei Szenarien werden die mit der Herstellung und dem Transport von Erdgas und Biomethan verknüpften Emissionen bis zum Jahr 2030 einschließlich des zu erwartenden technischen Optimierungspotenzials bilanziert. Mittels dieser Analyse können Einschätzungen der zukünftigen Emissionspfade und der durchschnittlichen Emissionen (Klimaqualität) des eingesetzten Gases (als Mischung fossiler und biogener Gase einschließlich der damit verbundenen Prozesskettenemissionen) gegeben werden. Diese können als Grundlage für energie- und klimapolitische Entscheidungen dienen.
Ergebnisse und Diskussion: Nach Erläuterung der Prozesskette von Biomethan werden die zu erwartenden technischen Entwicklungen der einzelnen Prozessschritte (Substratbereitstellung, Fermentierung, Aufbereitung, Gärrestnutzung) diskutiert und die Höhe der hiervon zu erwartenden Emissionen bilanziert. Basis sind Ergebnisse der wissenschaftlichen Begleitforschung des Wuppertal Instituts zur Einspeisung von Biomethan ins Erdgasnetz. Dabei gehen wir davon aus, dass die nächste Anlagengeneration "optimierte Technik" das aus heutiger Sicht bestehende Optimierungspotenzial des heutigen Stands der Technik ausschöpfen wird, sodass sich die spezifischen, auf den Heizwert des Biomethan bezogenen, THG-Emissionen der Vorkette von aktuell 27,8 t CO2-Äq/TJ auf 14,8 t CO2-Äq/TJ in 2030 fast halbieren werden.
Die zu erwartenden Emissionen der Erdgasprozesskette wurden in einem Vorgängerartikel bereits im Detail analysiert. Bei der Förderung und der Transportinfrastruktur ist ebenfalls eine Optimierung der Technik zu erwarten. Die dadurch erzielte Verringerung der spezifischen THG-Emissionen kann die aus den künftig längeren Transportstrecken und aufwendigen Produktionsprozessen resultierende Erhöhung ausgleichen.
Abschließend werden zwei Szenarien (Hoch- und Niedrigverbrauch) der künftigen Gasversorgung Deutschlands bis 2030 aufgestellt. Im Hochverbrauchszenario wird damit gerechnet, dass der Gaseinsatz in Deutschland um 17 % steigen wird. Im Niedrigverbrauchszenario wird er dagegen um etwa 17 % sinken. Gleichzeitig wird der Anteil von Biomethan am eingesetzten Gas auf 8 bzw. 12 % ansteigen. Die - direkten und indirekten - Treibhausgasemissionen der Gasnutzung in Deutschland werden im Niedrigverbrauchszenario um 25 %, d. h. überproportional von 215,4 Mio. t CO2-Äq auf 162,4 Mio. t CO2-Äq zurückgehen. Im Hochverbrauchsszenario steigen die Gesamtemissionen leicht um 7 % (auf 230,9 Mio. t CO2-Äq) an.
Schlussfolgerungen: Gasförmige Energieträger werden in den kommenden beiden Dekaden eine zentrale Säule der deutschen Energieversorgung bleiben. Insgesamt zeigt sich, dass die THG-Emissionen der Nutzung von Erdgas v. a. von den Verbrauchsmengen der Gasversorgung abhängig sind. Das heißt, dass sowohl aus klima- als auch aus energiepolitischer Sicht die Steigerung der Energieeffizienz ein zentraler Faktor ist. Daneben bestehen sowohl in der verstärkten Nutzung von Biomethan als auch in der weiteren Investition in emissionsoptimierte Technologien entlang der Vorketten signifikante Emissionsminderungspotenziale. Hierdurch kann die "Klimaqualität", d. h. die spezifische Treibhausgasemissionshöhe über alle Prozessstufen, des eingesetzten Gases deutlich verbessert werden. Die spezifischen Gesamtemissionen pro TJ eingesetzten Gases werden hierdurch um ca. 9 % von heute 63,3 t CO2-Äq pro TJ auf etwa 54,5 t/TJ sinken. Entscheidend ist hierfür der verstärkte Einsatz von Biomethan, dessen Verbrennung aufgrund der biogenen Herkunft des Kohlenstoffs weitgehend klimaneutral ist (im Vergleich zu direkten Emissionen von 56 t CO2/TJ bei der Verbrennung von Erdgas oder 111 t CO2/TJ bei z. B. Braunkohle). Die Vorteile der gasförmigen Energieträger in der Klimaqualität und effizienten Nutzung werden - insbesondere auch in der künftig zu erwartenden Beimischung von Biomethan - auch zukünftig Bestand haben.
Natural gas makes an increasing contribution to the European Union's energy supply. Due to its efficiency and low level of combustion emissions this reduces greenhouse gas emissions compared to the use of other fossil fuels. However, being itself a potent greenhouse gas, a high level of direct losses of natural gas in its process chain could neutralise these advantages. Which effect will finally prevail depends on future economical as well as technical developments. Based on two different scenarios of the main influencing factors we can conclude that over the next two decades CH4 emissions from the natural gas supply chain can be significantly reduced, in spite of unfavourable developments of the supply structures. This, however, needs a substantial, but economically attractive investment into new technology, particularly in Russia.
Ziel - In diesem Beitrag sollen die mit der Erdgasbereitstellung für den deutschen Markt verbundenen Treibhausgasemissionen entlang der gesamten Prozesskette dargestellt werden, um eine Gesamtbewertung der mit seiner Nutzung verbundenen Treibhausgasemissionen und einen Vergleich mit den entsprechenden Emissionen anderer Energieträger zu ermöglichen. Dabei werden die in bis 2030 zu erwartenden dynamischen Veranderungen sowohl der Gasherkunft, als auch der Technik bei Förderung, Aufbereitung und Transport detailliert berücksichtigt. Ein besonderer Schwerpunkt liegt auf den Emissionen der Erdgasbereitstellung aus Russland, das seine Rolle als führender Erdgaslieferant ggf. noch weiter ausbauen wird.
Ergebnisse und Diskussion - Die Analysen dieses Beitrags zeigen, dass sich die Bezugsstrukturen für Erdgas in den nächsten zwei Jahrzehnten signifikant verändern werden. Die Förderung in der EU wird deutlich zurückgehen und der Anteil russischen und norwegischen Erdgases sowie von verflüssigtem Erdgas LNG (z.B. aus Algerien und Ägypten) wird zunehmen. Obwohl hierdurch die Emissionssituation potentiell ungünstiger wird, können steigende Emissionen durch die erforderlichen umfangreichen Investitionen teilweise kompensiert werden, weil ältere und ineffizientere Technik durch den aktuellen Stand der Technik ausgetauscht wird. Im Ergebnis werden sich die gegenläufigen Trends in etwa aufheben und die Treibhausgasemissionen der Erdgasbereitstellung - je nach Investitionsumfang - leicht sinken, d.h. bei etwa 12% der direkten Treibhausgasemissionen liegen. Für die beiden hier berechneten Szenarien-Varianten wird eine Senkung der gesamten Vorketten-Emissionen des in Deutschland genutzten Gases von rund 23 Mio. t CO2-Äquivalent (2005) auf 19,5 bzw. 17,6 Mio. t CO2-Äquivalente bis 2030 angenommen. Bei der ersten Variante können trotz steigenden Gasverbrauchs die Emissionen mittels technischer Verbesserungen reduziert werden, während bei der zweiten Variante der erhebliche Rückgang des Gasimports Hauptgrund für die Emissionsreduktion ist.
Schlussfolgerungen - Derzeit liegen die indirekten Treibhausgasemissionen der Erdgasbereitstellung etwa auf dem Niveau der anderen fossilen Energieträger, Öl und Steinkohle. Beim Erdgas wird diese Höhe in den nächsten Jahrzehnten sogar stark absinken, wenn die großen Optimierungspotentiale konsequent umgesetzt werden. Allerdings sind für die Sicherstellung der Erdgasversorgung umfangreiche Investitionen erforderlich. Diese sollten mit der aus Emissionssicht jeweils best verfügbaren - und damit langfristig auch wirtschaftlichsten - Technik erfolgen. Erdgas wird unter diesen Voraussetzungen auch in Zukunft - als relativ sauberer fossiler Energieträger - eine wichtige Übergangsfunktion zur regenerativen Energieversorgung übernehmen können.
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.
With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.
Mit Inkrafttreten des Kyoto-Protokolls am 16.2.2005 gelten für Deutschland und die meisten anderen Industrieländer völkerrechtlich bindende Minderungsziele für die 6 im Kyoto-Protokoll erfassten Treibhausgase. Damit erlangt eine durchaus kontrovers diskutierte Klimaschutzstrategie, die auf eine stärkere Umstellung der Energienutzung von Öl und Kohle auf mehr Erdgas setzt, zusätzlich an Bedeutung. Der nachfolgende Beitrag setzt sich mit der Klimabilanz des Erdgases unter Berücksichtigung der gesamten Prozesskette auseinander. Insbesondere werden neue Messergebnisse aus Russland dargestellt (Wuppertal Institut 2004), die zeigen, dass die dem Export von russischem Erdgas nach Deutschland zuzuordnenden indirekten Emissionen nur etwa ein Viertel der bei der Erdgasverbrennung entstehenden direkten Emissionen betragen. Damit bleibt Erdgas auch unter Berücksichtigung der indirekten Emissionen in Russland der fossile Energieträger mit den mit Abstand geringsten Treibhausgasemissionen.
Using natural gas for fuel releases less carbon dioxide per unit of energy produced than burning oil or coal, but its production and transport are accompanied by emissions of methane, which is a much more potent greenhouse gas than carbon dioxide in the short term. This calls into question whether climate forcing could be reduced by switching from coal and oil to natural gas. We have made measurements in Russia along the world's largest gas-transport system and find that methane leakage is in the region of 1.4%, which is considerably less than expected and comparable to that from systems in the United States. Our calculations indicate that using natural gas in preference to other fossil fuels could be useful in the short term for mitigating climate change.