Refine
Year of Publication
Document Type
- Report (59)
- Peer-Reviewed Article (33)
- Conference Object (26)
- Contribution to Periodical (21)
- Part of a Book (20)
- Working Paper (8)
- Book (1)
- Doctoral Thesis (1)
- Lecture (1)
- Periodical Part (1)
Division
- Zukünftige Energie- und Industriesysteme (171) (remove)
Target 2020 : policies and measures to reduce greenhouse gas emissions in the EU ; final report
(2005)
Under the framework of the UN framework convention on climate change (UNFCCC) and its Kyoto Protocol the targets and strategies for the second and third commitment period ("post-2012") have to be discussed and set in the near future. Regarding the substantial emission reductions that have to be shouldered by the industrialized nations over the next two decades it is evident that all available potentials to mitigate greenhouse gas (GHG) emissions have to be harnessed and that energy efficiency has to play a key role.
To substantiate this we developed a comprehensive scenario analysis of the EU 25s energy system and other greenhouse gas emissions until 2020. Our analysis shows which key potentials to mitigate greenhouse gas emissions are available, by which policies and measures they are attainable
and which will be benefits of greenhouse gas mitigation measures.
By this analysis we show the mayor role of energy efficiency in all sectors and all member states. We demonstrate that a reduction of EU 25 greenhouse gas emissions by more than 30 % by 2020 is feasible, reasonable and - to a large extent - cost effective. We also develop a comprehensive policy package necessary to achieve ambitious Post-Kyoto targets.
The scenario analysis results in a clear identification of the needed strategies, policies and measures and especially the relevance of energy efficiency to achieve the necessary ambitious greenhouse gas reduction targets. It also clearly shows the costs and the benefits of such a policy compared to a business as usual case.
Mit Inkrafttreten des Kyoto-Protokolls am 16.2.2005 gelten für Deutschland und die meisten anderen Industrieländer völkerrechtlich bindende Minderungsziele für die 6 im Kyoto-Protokoll erfassten Treibhausgase. Damit erlangt eine durchaus kontrovers diskutierte Klimaschutzstrategie, die auf eine stärkere Umstellung der Energienutzung von Öl und Kohle auf mehr Erdgas setzt, zusätzlich an Bedeutung. Der nachfolgende Beitrag setzt sich mit der Klimabilanz des Erdgases unter Berücksichtigung der gesamten Prozesskette auseinander. Insbesondere werden neue Messergebnisse aus Russland dargestellt (Wuppertal Institut 2004), die zeigen, dass die dem Export von russischem Erdgas nach Deutschland zuzuordnenden indirekten Emissionen nur etwa ein Viertel der bei der Erdgasverbrennung entstehenden direkten Emissionen betragen. Damit bleibt Erdgas auch unter Berücksichtigung der indirekten Emissionen in Russland der fossile Energieträger mit den mit Abstand geringsten Treibhausgasemissionen.
Vorteil für Erdgas
(2005)
Using natural gas for fuel releases less carbon dioxide per unit of energy produced than burning oil or coal, but its production and transport are accompanied by emissions of methane, which is a much more potent greenhouse gas than carbon dioxide in the short term. This calls into question whether climate forcing could be reduced by switching from coal and oil to natural gas. We have made measurements in Russia along the world's largest gas-transport system and find that methane leakage is in the region of 1.4%, which is considerably less than expected and comparable to that from systems in the United States. Our calculations indicate that using natural gas in preference to other fossil fuels could be useful in the short term for mitigating climate change.
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.
With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.
Toothless tiger? : Is the EU action plan on energy efficiency sufficient to reach its target?
(2007)
Motivated by, inter alia, the increasing energy prices, the security of energy supply and climate change, the new EU "Action Plan for Energy Efficiency: Realising the Potential" (EEAP), sets out the policies and measures required to be implemented over the next six years to achieve the EU's goal of reducing annual primary energy consumption by about 20 % by 2020. By increasing energy efficiency, the security of energy supply and the reduction of carbon emissions are also improved.
The paper will analyse the 20 % target of the new EEAP for the energy demand side by comparison with different recent energy scenarios for the EU. It will therefore review the recommended policies and measures and examine, in which energy demand sectors energy efficiency may be increased and to which extend. The main focus is whether the recommended policies and actions will be sufficient and which additional measures may be useful, if additional measures are needed.
Angewandte Systemanalyse
(2008)
Ziel - In diesem Beitrag sollen die mit der Erdgasbereitstellung für den deutschen Markt verbundenen Treibhausgasemissionen entlang der gesamten Prozesskette dargestellt werden, um eine Gesamtbewertung der mit seiner Nutzung verbundenen Treibhausgasemissionen und einen Vergleich mit den entsprechenden Emissionen anderer Energieträger zu ermöglichen. Dabei werden die in bis 2030 zu erwartenden dynamischen Veranderungen sowohl der Gasherkunft, als auch der Technik bei Förderung, Aufbereitung und Transport detailliert berücksichtigt. Ein besonderer Schwerpunkt liegt auf den Emissionen der Erdgasbereitstellung aus Russland, das seine Rolle als führender Erdgaslieferant ggf. noch weiter ausbauen wird.
Ergebnisse und Diskussion - Die Analysen dieses Beitrags zeigen, dass sich die Bezugsstrukturen für Erdgas in den nächsten zwei Jahrzehnten signifikant verändern werden. Die Förderung in der EU wird deutlich zurückgehen und der Anteil russischen und norwegischen Erdgases sowie von verflüssigtem Erdgas LNG (z.B. aus Algerien und Ägypten) wird zunehmen. Obwohl hierdurch die Emissionssituation potentiell ungünstiger wird, können steigende Emissionen durch die erforderlichen umfangreichen Investitionen teilweise kompensiert werden, weil ältere und ineffizientere Technik durch den aktuellen Stand der Technik ausgetauscht wird. Im Ergebnis werden sich die gegenläufigen Trends in etwa aufheben und die Treibhausgasemissionen der Erdgasbereitstellung - je nach Investitionsumfang - leicht sinken, d.h. bei etwa 12% der direkten Treibhausgasemissionen liegen. Für die beiden hier berechneten Szenarien-Varianten wird eine Senkung der gesamten Vorketten-Emissionen des in Deutschland genutzten Gases von rund 23 Mio. t CO2-Äquivalent (2005) auf 19,5 bzw. 17,6 Mio. t CO2-Äquivalente bis 2030 angenommen. Bei der ersten Variante können trotz steigenden Gasverbrauchs die Emissionen mittels technischer Verbesserungen reduziert werden, während bei der zweiten Variante der erhebliche Rückgang des Gasimports Hauptgrund für die Emissionsreduktion ist.
Schlussfolgerungen - Derzeit liegen die indirekten Treibhausgasemissionen der Erdgasbereitstellung etwa auf dem Niveau der anderen fossilen Energieträger, Öl und Steinkohle. Beim Erdgas wird diese Höhe in den nächsten Jahrzehnten sogar stark absinken, wenn die großen Optimierungspotentiale konsequent umgesetzt werden. Allerdings sind für die Sicherstellung der Erdgasversorgung umfangreiche Investitionen erforderlich. Diese sollten mit der aus Emissionssicht jeweils best verfügbaren - und damit langfristig auch wirtschaftlichsten - Technik erfolgen. Erdgas wird unter diesen Voraussetzungen auch in Zukunft - als relativ sauberer fossiler Energieträger - eine wichtige Übergangsfunktion zur regenerativen Energieversorgung übernehmen können.
Wichtiger Eckpunkt des EU-Pakets vom 23.1.2008 zur Realisierung der 20-20-20-Ziele ist die Erhöhung des Anteils erneuerbarer Energien (REN) mittels einer Richtlinie, die national umzusetzen ist. Hierzu liegt ein Entwurf vor. Auch wenn es noch Auseinandersetzungen um die Alternative eines EU-weiten einheitlichen Systems auf Basis eines Quoten-/Zertifikatehandels versus nationaler Fördersysteme gibt, ist davon auszugehen, dass letztlich eine Koexistenz der EEG-artigen und der Quoten-Ansätze auf mitgliedstaatlicher Ebene möglich sein wird. Vor diesem Hintergrund wird im Folgenden nach innovativen Optionen gefragt, die die neue Rechtslage auf EU-Ebene für die mitgliedstaatliche Umsetzung bietet.
Development of alternative energy and climate scenarios for the Czech Republic : final report
(2009)
Die Städte tragen weltweit am stärksten zum Klimawandel bei. Wer mit dem Klimaschutz ernst machen will, muss also dort ansetzen. Eine Metropole in einen weitgehend CO2-freien Ballungsraum umzuwandeln, ist eine sehr anspruchsvolle, aber machbare Aufgabe, die natürlich nicht umsonst zu haben ist, sich im Großen und Ganzen aber rechnet. Wie eine aktuelle Studie zeigt, lässt sich die weitgehende CO2-Freiheit aber nur realisieren, wenn der gesamte Entwicklungsprozess der urbanen Infrastrukturen in die Stadt-, Gebäude-, Verkehrs- und Energieplanung sowie in die Investitionsentscheidungen der privaten Akteure vorrangig integriert wird. Und wenn alle mitziehen: Verwaltungen, Stadtplaner, Energieversorger und der Bürger.
Iran is one of the largest oil producers and natural gas owners globally. However, it has to struggle with domestic energy shortages, economic losses through energy subsidisation and inefficient energy infrastructures. Furthermore, GHG and other energy related emissions are rapidly increasing and posing a growing threat to local environment as well as global climate. With current trends prevailing, Iran may even become a net energy importer over the next decades. Resource allocation is therefore a crucial challenge for Iran: domestic consumption stands versus exports of energy.
The energy transformation sector clarifies Iran's dilemma: soaring electricity demand leads to blackouts, and power plant new builds are far from using most efficient technologies (e. g. CHP), therefore keeping energy intensive structures. But fossil fuels could be sold on international markets if spared by having more efficient energy infrastructures.
As shown by the high energy intensity of its economy, Iran has large potentials for energy saving and efficiency. In order to highlight and better identify this potential the paper contrasts a high efficiency scenario in all sectors of energy transformation and consumption with a possible "business as usual" development.
Using a bottom-up approach, the analysis provides a sector-by-sector perspective on energy saving potentials. These can be utilised on the demand side especially in the transport sector (fuels) and in households (electricity for appliances, natural gas for heating). Electricity generation bears efficiency potentials as well.
We conclude that Iran, but also the international community, would benefit on various levels from a more energy-efficient Iranian economy: Energy exports could increase, generating more foreign currency and reducing the pressures on international oil and gas prices; energy consumption would decrease, leading to lower needs for nuclear energy and for subsidies to Iranian people, as well as to a reduction of the high external costs entailed by fossil fuels combustion (smog in cities, environmental stress).
Based on a comprehensive scenario analysis of the EU's GHG emissions by 2020, we show that the 20% energy savings target set in the Action Plan "Doing more with less" in 2006 is still the most significant and thus indispensable strategy element within an ambitious EU climate and energy strategy targeting at a 30% reduction of GHG emissions by 2020.
The scenario analysis provides a sector by sector projection of potential future energy use and GHG emissions, combined with a detailed policy analysis of the core policies on energy efficiency by the EU and its Member States taken from current research results by the authors and others.
Consequently the paper identifies and quantifies the current implementation deficit in the EU and shows that, despite of sufficient targets, implementation is still significantly lacking in almost all fields of energy efficiency. Some, e.g. transport sector and buildings, are still substantially far from receiving the necessary political impetus. The paper also demonstrates co-benefits of a strong energy efficiency strategy, e.g. the achievability of the targets of the RES directive, which crucially depends on a strong efficiency policy.
We conclude that the efforts of the energy efficiency policy of the EU and its Member States have to be significantly intensfied. As proposed by the EU in case that other developed and key developing countries take up comparable targets in order to fulfil its role in the climate and energy strategy. To achieve this, we offer an analysis of the current weaknesses of EU energy efficiency policy and derive recommendations on how the EU can still reach its targets for 2020.
Preventing the worst consequences of climate change would require that GHG emissions be reduced to levels near zero by the middle of the century. To respond to such a daunting challenge, we need to rethink and redesign the currently highly energy-dependent infrastructures of industrial societies and particularly the urban infrastructures to become low- or even zero-carbon cities. Sustainable urban infrastructures need technology. In this paper focused on Western European Cities, we discuss a wide set of technologies in the fields of building, energy and transport infrastructures that can significantly contribute to a reduction of energy and/or GHG emissions and are already available or are in the pipeline. Based on the review of a recent study for the city of Munich, we then present how a mix of these technologies could reduce CO2-emissions by up to 90% for the metropolis of 1.3 million inhabitants and that this strategy could be economically attractive despite a high initial investment.
All of the residential buildings of a city like Munich could be entirely redesigned for EUR 200 per inhabitant annually, which is about one third of an average annual natural gas bill.
Energy used in buildings is responsible for more than 40% of energy consumption and greenhouse gas (GHG) emissions of the EU and their share in cost-efficient GHG mitigation potentials is estimated to be even higher. In spite of its huge savings potential of up to 80%, achievements are very slow in the building sector and much stronger political action seems to be needed. One important step in this direction has been the recast of the Energy Performance of Buildings Directive (EPBD) in autumn 2009. However, strong national implementation including powerful packages of flanking measures seems to be crucial to really make significant progress in this important field. In order to directly improve political action, we provide a differentiated country-by-country bottom up simulation of residential buildings for the whole EU, Norway, Iceland, Croatia and Liechtenstein. The analysis provides a database of the building stock by construction periods, building types, as well as typical building sizes. It includes a simulation of the thermal quality and costs of the components of the building shell for new buildings as well as the refurbishment of the existing building stock. Based on this differentiated analysis, we show in detail what would be needed to accelerate energy savings in the building sector and provide a more precise estimate of the potentials to be targeted by particular policies. We demonstrate, e.g. that the potential of building codes set via the EPBD would be located mainly in those countries that already have quite stringent codes in place. We show as well the high relevance of accelerating refurbishments and re-investment cycles of buildings. By providing a clear estimate of the full costs related to such a strategy, we highlight a major obstacle to accelerated energy-efficient building renovation and construction.
Hintergrund: Die Bezugsquellen und Transportwege von fossilem Erdgas werden sich in den kommenden beiden Dekaden diversifizieren. Veränderungen der Lieferstruktur, verbunden mit weiteren Transportentfernungen und dem Neubau von Pipelines sowie der verstärkte Einsatz von verflüssigtem Erdgas (LNG - Liquefied Natural Gas) sind zu erwarten. Entsprechend werden sich auch die vorgelagerten Prozessketten und die damit verknüpften THG-Emissionen verändern. Im Sinne einer korrekten und ganzheitlichen Bilanzierung der Lebenszyklusemissionen und weitgehender Treibhausgasminderungsziele, sind die vorgelagerten Emissionen eine nicht zu vernachlässigende Größe. Gleichzeitig wird Biomethan als Beimischung zum fossilen Erdgas an Bedeutung gewinnen. Obwohl seine Verbrennung als klimaneutral gewertet wird, sind die Prozesse zur Herstellung von Biomethan mit Emissionen verbunden.
Die Treibhausgasemissionen (THG) der Vorketten von in der EU eingesetzten Energieträgern werden in der neuen EU-Kraftstoffqualitätsrichtlinie (vom Dez. 2008) reguliert. Ihre Höhe und ihre Entwicklung wird für die klimapolitischen Diskussionen und politische Entscheidungen somit immer wichtiger.
Ziel: Vor dem Hintergrund der angesprochenen Aspekte sollen die zukünftige Entwicklung der Gasversorgung in Deutschland und die Veränderungen der vorgelagerten THG-Emissionen von Erdgas und Biomethan ermittelt werden. In zwei Szenarien werden die mit der Herstellung und dem Transport von Erdgas und Biomethan verknüpften Emissionen bis zum Jahr 2030 einschließlich des zu erwartenden technischen Optimierungspotenzials bilanziert. Mittels dieser Analyse können Einschätzungen der zukünftigen Emissionspfade und der durchschnittlichen Emissionen (Klimaqualität) des eingesetzten Gases (als Mischung fossiler und biogener Gase einschließlich der damit verbundenen Prozesskettenemissionen) gegeben werden. Diese können als Grundlage für energie- und klimapolitische Entscheidungen dienen.
Ergebnisse und Diskussion: Nach Erläuterung der Prozesskette von Biomethan werden die zu erwartenden technischen Entwicklungen der einzelnen Prozessschritte (Substratbereitstellung, Fermentierung, Aufbereitung, Gärrestnutzung) diskutiert und die Höhe der hiervon zu erwartenden Emissionen bilanziert. Basis sind Ergebnisse der wissenschaftlichen Begleitforschung des Wuppertal Instituts zur Einspeisung von Biomethan ins Erdgasnetz. Dabei gehen wir davon aus, dass die nächste Anlagengeneration "optimierte Technik" das aus heutiger Sicht bestehende Optimierungspotenzial des heutigen Stands der Technik ausschöpfen wird, sodass sich die spezifischen, auf den Heizwert des Biomethan bezogenen, THG-Emissionen der Vorkette von aktuell 27,8 t CO2-Äq/TJ auf 14,8 t CO2-Äq/TJ in 2030 fast halbieren werden.
Die zu erwartenden Emissionen der Erdgasprozesskette wurden in einem Vorgängerartikel bereits im Detail analysiert. Bei der Förderung und der Transportinfrastruktur ist ebenfalls eine Optimierung der Technik zu erwarten. Die dadurch erzielte Verringerung der spezifischen THG-Emissionen kann die aus den künftig längeren Transportstrecken und aufwendigen Produktionsprozessen resultierende Erhöhung ausgleichen.
Abschließend werden zwei Szenarien (Hoch- und Niedrigverbrauch) der künftigen Gasversorgung Deutschlands bis 2030 aufgestellt. Im Hochverbrauchszenario wird damit gerechnet, dass der Gaseinsatz in Deutschland um 17 % steigen wird. Im Niedrigverbrauchszenario wird er dagegen um etwa 17 % sinken. Gleichzeitig wird der Anteil von Biomethan am eingesetzten Gas auf 8 bzw. 12 % ansteigen. Die - direkten und indirekten - Treibhausgasemissionen der Gasnutzung in Deutschland werden im Niedrigverbrauchszenario um 25 %, d. h. überproportional von 215,4 Mio. t CO2-Äq auf 162,4 Mio. t CO2-Äq zurückgehen. Im Hochverbrauchsszenario steigen die Gesamtemissionen leicht um 7 % (auf 230,9 Mio. t CO2-Äq) an.
Schlussfolgerungen: Gasförmige Energieträger werden in den kommenden beiden Dekaden eine zentrale Säule der deutschen Energieversorgung bleiben. Insgesamt zeigt sich, dass die THG-Emissionen der Nutzung von Erdgas v. a. von den Verbrauchsmengen der Gasversorgung abhängig sind. Das heißt, dass sowohl aus klima- als auch aus energiepolitischer Sicht die Steigerung der Energieeffizienz ein zentraler Faktor ist. Daneben bestehen sowohl in der verstärkten Nutzung von Biomethan als auch in der weiteren Investition in emissionsoptimierte Technologien entlang der Vorketten signifikante Emissionsminderungspotenziale. Hierdurch kann die "Klimaqualität", d. h. die spezifische Treibhausgasemissionshöhe über alle Prozessstufen, des eingesetzten Gases deutlich verbessert werden. Die spezifischen Gesamtemissionen pro TJ eingesetzten Gases werden hierdurch um ca. 9 % von heute 63,3 t CO2-Äq pro TJ auf etwa 54,5 t/TJ sinken. Entscheidend ist hierfür der verstärkte Einsatz von Biomethan, dessen Verbrennung aufgrund der biogenen Herkunft des Kohlenstoffs weitgehend klimaneutral ist (im Vergleich zu direkten Emissionen von 56 t CO2/TJ bei der Verbrennung von Erdgas oder 111 t CO2/TJ bei z. B. Braunkohle). Die Vorteile der gasförmigen Energieträger in der Klimaqualität und effizienten Nutzung werden - insbesondere auch in der künftig zu erwartenden Beimischung von Biomethan - auch zukünftig Bestand haben.
Natural gas makes an increasing contribution to the European Union's energy supply. Due to its efficiency and low level of combustion emissions this reduces greenhouse gas emissions compared to the use of other fossil fuels. However, being itself a potent greenhouse gas, a high level of direct losses of natural gas in its process chain could neutralise these advantages. Which effect will finally prevail depends on future economical as well as technical developments. Based on two different scenarios of the main influencing factors we can conclude that over the next two decades CH4 emissions from the natural gas supply chain can be significantly reduced, in spite of unfavourable developments of the supply structures. This, however, needs a substantial, but economically attractive investment into new technology, particularly in Russia.
The present brief analysis provides an overview about costs and benefits of the promotion of renewable energies in the framework of the EEG. We describe the development of the EEG apportionment in recent years, and its possible development in coming years. Furthermore, the analysis examines the merits of some of the most commonly expressed points of criticism against the EEG. Finally, we examine the extent to which the calculations regarding the costs of the expansion of photovoltaics, which are often raised in the media, are correct, and how they are to be interpreted.
Die vorliegende Kurzanalyse gibt einen Überblick über die Kosten und Nutzen der Förderung erneuerbarer Energien im Rahmen des EEG. Dabei wird unter anderem auf die Entwicklung der EEG-Umlage in den letzten Jahren und ihre mögliche Entwicklung in den kommenden Jahren eingegangen. Außerdem setzt sich die Analyse mit einigen grundsätzlichen Kritikpunkten am EEG auseinander. Abschließend wird geprüft, inwieweit häufig durch die Medien aufgegriffene Berechnungen zu den Kosten des Ausbaus der Fotovoltaik zutreffend sind und wie sie zu interpretieren sind.
International consensus is growing that a transition towards a low carbon society (LCS) is needed over the next 40 years. The G8, the Major Economies Forum on Energy and Climate, as well as the Ad Hoc Working Group on Long-term Cooperative Action under the United Nations Framework Convention on Climate Change, have concluded that states should prepare their own Low-emission Plans or Low-emission Development Plans and such plans are in development in an increasing number of countries.
An analysis of recent long-term low emission scenarios for Germany shows that all scenarios rely heavily on a massive scale up of energy efficiency improvements based on past trends. However, in spite of the high potential that scenario developers assign to this strategy, huge uncertainty still exists in respect of where the efficiency potentials really lie, how and if they can be achieved and how much their successful implementation depends on more fundamental changes towards a more sustainable society (e.g. behavioural changes).
In order to come to a better understanding of this issue we specifically examine the potential for energy efficiency in relation to particular demand sectors. Our comparative analysis shows that despite general agreement about the high importance of energy efficiency (EE), the perception on where and how to achieve it differ between the analysed scenarios. It also shows that the close nexus between energy efficiency and non-technical behavioural aspects is still little understood. This leads us to the conclusion that in order to support energy policy decisions more research should be done on energy efficiency potential. A better understanding of its potential would help energy efficiency to fulfil its role in the transition towards a LCS.
Mit dem Kernenergieunfall im japanischen Fukushima im März 2011 ist die Diskussion über das Für und Wider der Nutzung der Kernenergie für die Stromerzeugung in Deutschland neu entbrannt. Die Frage nach den Auswirkungen eines beschleunigten Ausstiegs aus der Kernenergienutzung auf die Entwicklung der Strompreise in Deutschland bildete in den vergangenen Monaten einen Schwerpunkt der öffentlichen Diskussion. Allerdings halten nicht alle Aussagen, die hierzu veröffentlicht wurden, einer kritischen Analyse stand, was zum Teil auch an zugrunde liegenden politischen Motiven gelegen haben mag. Eine Untersuchung fundierter Studien und ausgewählter Stellungnahmen zeigt, dass sich die befürchteten kurzfristigen Preiseffekte in ü̈berschaubaren Grenzen halten werden.
Energiewende
(2011)
Die vorliegende Studie im Auftrag des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes NRW liefert zunächst in Kapitel 2 einen Überblick über wichtige grundsätzliche Zusammenhänge, die für eine Diskussion der Strompreiseffekte eines beschleunigten Ausstiegs zu berücksichtigen sind und stellt etwaige Preiswirkungen in den größeren Zusammenhang weiterer, ggf. auch positiver ökonomischer Wirkungen einer beschleunigten Energiewende. In Kapitel 3 werden anschließend die bisher öffentlich verfügbaren Untersuchungen und wissenschaftlichen Stellungnahmen zu der Frage der zu erwartenden Strompreiseffekte einzeln vorgestellt und bewertet. Das Fazit in Kapitel 4 fasst schließlich den aus den verschiedenen Studien und Stellungnahmen abgeleiteten aktuellen Wissensstand zur Untersuchungsfrage zusammen und geht kurz auf mögliche politische Maßnahmen zur Begrenzung der Strompreiseffekte sowie der damit potenziell verbundenen negativen Auswirkungen ein.
Iran as an energy-rich country faces many challenges in optimal utilization of its vast resources. High population and economic growth, generous subsidies program, and poor resource management have contributed to rapidly growing energy consumption and high energy intensity for the past decades. The continuing trend of energy consumption will bring about new challenges as it will shrink oil exports revenues restraining economic activities and lowering standard of living. This study intends to tackle some of the important challenges in the energy sector and to explore alternative scenarios for utilization of energy resources in Iran for the period 2005-2030. We use techo-economic or end-use approach along with econometric methods to model energy demand in Iran for different types (fuel, natural gas, electricity, and renewable energy) in all sectors of the economy (household, industry, transport, power plants, and others) and forecast it under three scenarios: Business As Usual (BAU), Efficiency, and Renewable Energy.
This study is the first comprehensive study that models the Iranian energy demand using the data at different aggregation levels and a combination of methods to illuminate the future of energy demand under alternative scenarios. The results of the study have great policy implications as they indicate a huge potential for energy conservation and therefore additional revenues and emission reduction under the efficiency scenario compared with the base scenario. Specifically, the total final energy demand under the BAU scenario will grow on average by 2.6 percent per year reaching twice the level as that in 2005. In contrast, the total final energy demand in the Efficiency scenario will only grow by 0.4 percent on average per year. The average growth of energy demand under the combined Efficiency and Renewable Energy scenarios will be 0.2 percent per year. In the BAU scenario, energy intensity will be reduced by about 30 percent by 2030, but will still be above today's world average. In the Efficiency scenario, however, energy intensity will decline by about 60 percent by 2030 to a level lower than the world average today. The energy savings under the Efficiency and Renewable scenarios will generate significant additional revenues and will lead to 45 percent reduction in CO2-emissions by 2030 as compared to the BAU trends.
Nach § 65 Erneuerbare-Energien-Gesetz 2009 hat die Bundesregierung das EEG zu evaluieren und dem Bundestag bis zum 31.12.2011 und dann alle vier Jahre einen Erfahrungsbericht vorzulegen. Das den Erfahrungsbericht begleitende Forschungsvorhaben V "Integration der Stromerzeugung aus Erneuerbaren Energien und konventionellen Energieträgern" soll hierfür die Themenbereiche der systemtechnischen, rechtlichen und marktbezogenen Aspekte einer Transmission des Kraftwerkparks wissenschaftlich analysieren und vertiefen.
Die Untersuchung setzt auf dem aktuellen BMU-Leitszenario (2010) auf und betrachtet die Jahre 2010, 2020, 2030 und 2050 und Deutschland im Sinne eines Einpunktnetzmodells bzw. einer "netztechnischen Kupferplatte".
The need for an "Energy Roadmap 2050" triggered a multitude of studies that were conducted between 2009 and 2011, which again contained a multitude of decarbonisation scenarios, which achieve the EU's long-term emission mitigation target of reducing greenhouse gas emissions by at least 80% until 2050 (relative to 1990 emissions). The variety of important analysis is difficult to compare and utilize for specific and timely policy decisions. Thus the Smart Energy for Europe Platform (SEFEP) has commissioned a comparative study of relevant energy scenario studies for Europe. The findings of this comparative study are summarized here briefly.
Etude stratégique du mix energétique pour la production d'electricité en Tunisie : rapport final
(2012)
Die atompolitische Wende der Bundesregierung hatte zahlreichen Spekulationen und Befürchtungen Raum gegeben. Es wurde gemutmaßt, dass Deutschland zum Nettostromimporteur werden könnte, sollten die Kraftwerke (wie im Sommer 2011 beschlossen) dauerhaft außer Betrieb bleiben. Darüber hinaus nahm man an, dass die in Deutschland entfallende Stromerzeugung durch Kohlekraftwerke oder durch Importe aus französischen oder tschechischen Atomkraftwerken ersetzt würde und dass Strompreise sowie CO2-Emissionen deutlich ansteigen würden. Inzwischen liegen vorläufige Energiebilanzen und Marktdaten für das Jahr 2011 vor, die viele dieser Befürchtungen widerlegen. Der hier vorgenommene Ausblick auf die mögliche Entwicklung in den kommenden Jahren zeigt zudem, dass die Bilanz von 2011 keine Momentaufnahme sein muss, sondern dass der gegenüber 2010 wegfallende Kernenergiestrom - bilanziell gesehen - voraussichtlich bereits ab 2013 allein durch eine erhöhte regenerative Stromerzeugung kompensiert werden kann.
Purpose - Iran as an energy-rich country faces many challenges in the optimal utilization of its vast resources. High rates of population and economic growth, a generous subsidies program, and poor resource management have contributed to rapidly growing energy consumption and high energy intensity over the past decades. The continuing trend of rising energy consumption will bring about new challenges as it will shrink oil export revenues, restraining economic activities. This calls for a study to explore alternative scenarios for the utilization of energy resources in Iran. The purpose of this paper is to model demand for energy in Iran and develop two business-as-usual and efficiency scenarios for the period 2005-2030.
Design/methodology/approach - The authors use a techno-economic or end-use approach to model energy demand in Iran for different types of energy uses and energy carriers in all sectors of the economy and forecast it under two scenarios: business as usual (BAU) and efficiency.
Findings - Iran has a huge potential for energy savings. Specifically, under the efficiency scenario, Iran will be able to reduce its energy consumption 40 percent by 2030. The energy intensity can also be reduced by about 60 percent to a level lower than the world average today.
Originality/value - The paper presents a comprehensive study that models the Iranian energy demand in different sectors of the economy, using data at different aggregation levels and a techno-economic end-use approach to illuminate the future of energy demand under alternative scenarios.
Die nachhaltige Gestaltung der zukünftigen Energieversorgung stellt heute große Herausforderungen. Diese gehen weit über die häufig im Mittelpunkt stehende Frage des Klimaschutzes hinaus und umfassen Aspekte der Versorgungssicherheit, der Wirtschafts- und Sozialverträglichkeit ebenso wie Ansprüche nach Risikominimierung, geringer Systemverletzlichkeit und Anpassungsfähigkeit. Bei der Gestaltung entsprechender Politiken und bei der Umsetzung von Maßnahmen gilt es diesen komplexen Anforderungskanon im Hinterkopf zu haben, Synergieeffekte anzustreben und trade off's zwischen verschiedenen Zielen zu vermeiden.
The final report of the research project "Power Sector Decarbonisation: Metastudy" contains the various reports prepared by Öko-Institut and Wuppertal Institute during the course of the SEFEP funded project. A key objective of the project was to make a contribution to the debates within the European Union (EU) and Member States on the EU's Energy Roadmap 2050 publication, which was released in December 2011. This objective was achieved by systematically analysing and comparing recently published scenarios on the European electricity sector commissioned by a range of different stakeholders (environmental NGOs, industry and government agencies).
Germany's current efforts to decarbonize its electricity system are analysed. As nuclear power and fossil power plants equipped with carbon capture and storage were ruled out in 2011, renewable electricity generation (RES) together with electricity savings are the primary focus for achieving decarbonization. Germany aims to have RES account for at least 80% of its electricity by 2050. Achieving renewable generation needs strong political support and regulatory provisions for its market integration. Four main technical and regulatory challenges are the maintenance of a steady and efficient expansion of RES, the provision of balancing capacities, the realization of the targeted electricity savings, and the smart adaptation of the transport and distribution grid. An overview of the existing and planned regulatory provisions for decarbonization are described, and some gaps identified, particularly with regard to the overall management of the process, the inclusion of electricity savings and the interference of Germany's decarbonization strategies with neighbouring countries. Policies that both accelerate grid expansion and direct RES expansion should immediately be put in place and can be supported by a targeted mobilization of balancing capacities. Electricity savings are a significant and cost-efficient strategy for low-carbon electricity. Policy relevance: Germany is actively converting its national electricity system towards a fully renewable one. As renewable electricity has reached about a quarter of total consumption, a number of technical and regulatory challenges arise. Current discussions and plans are described for the four main challenges: maintaining and optimizing high investment rates into RES generation technologies, providing balancing capacities, reducing demand, and adapting the grid to the changing needs. Policy recommendations for these four tasks highlight the need to intensify electricity demand reduction and also consider the potential interactions between the German electricity system and its neighbouring countries.
The 2011 Japanese earthquake and tsunami, and the consequent accident at the Fukushima nuclear power plant, have had consequences far beyond Japan itself. Reactions to the accident in three major economies Japan, the UK, and Germany, all of whom were committed to relatively ambitious climate change targets prior to the accident are examined. In Japan and Germany, the accident precipitated a major change of policy direction. In the UK, debate has been muted and there has been essentially no change in energy or climate change policies. The status of the energy and climate change policies in each country prior to the accident is assessed, the responses to the accident are described, and the possible impacts on their positions in the international climate negotiations are analysed. Finally, the three countries' responses are compared and some differences between them observed. Some reasons for their different policy responses are suggested and some themes, common across all countries, are identified. Policy relevance: The attraction of nuclear power has rested on the promise of low-cost electricity, low-carbon energy supply, and enhanced energy independence. The Fukushima accident, which followed the Japanese tsunami of March 2011, has prompted a critical re-appraisal of nuclear power. The responses to Fukushima are assessed for the UK, Germany, and Japan. Before the accident, all three countries considered nuclear as playing a significant part in climate mitigation strategies. Although the UK Government has continued to support nuclear new build following a prompt review of safety arrangements, Japan and Germany have decided to phase out nuclear power, albeit according to different timescales. The factors that explain the different decisions are examined, including patterns of energy demand and supply, the wider political context, institutional arrangements, and public attitudes to risk. The implications for the international climate negotiations are also assessed.
Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law - passed in parliament by a large majority - that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs.
The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO2-emissions and a need for Germany to become a net importer of electricity.
Now - a little more than a year after the phase-out law entered into force - this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation.
The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011.
If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable to gradually reduce fossil fuel generated electricity. Whether the reduction in fossil fuel use will be sufficient to adequately contribute to national greenhouse gas mitigation targets significantly depends on an active policy to promote electricity savings, continuous efforts to increase the use of renewables and a higher share of natural gas (preferably used in combined heat and power plants) in fossil fuel power generation.
Several low-carbon energy roadmaps and scenarios have recently been published by the European Commission and the International Energy Agency (IEA) as well as by various stakeholders such as Eurelectric, ECF and Greenpeace. Discussions of these studies mainly focus on technology options available on the electricity supply side and mostly omit the significant challenges that all of the scenarios impose on the energy demand side.
A comparison of 5 decarbonisation scenarios from 4 of the most relevant recent scenario studies for the EU shows that all of them imply significant efficiency improvements in traditional appliances, usually well above levels historically observed over longer periods of time. At the same time they assume substantial electrification of transportation and heating. The scenarios suggest that both of these challenges need to be tackled successfully for decarbonising the energy system.
With shares of renewable electricity reaching at least 60 % of supply in 2050 in almost all of the decarbonisation scenarios, the adaptation of demand to variable supply becomes increasingly important. This aspect of demand side management should therefore be part of any policy mix aiming for a low-carbon power system.
Based on a quantitative analysis of 5 decarbonisation scenarios and a comparison with historical evidence we derive the (implicit) new challenges posed by the current low-carbon roadmaps and develop recommendations for energy policy on the electricity demand side.
There's no decarbonisation without energy efficiency : but take care of the "rebound effects"
(2013)
The greenhouse gas balance
(2013)
The EU has set itself ambitious targets with regards to a significant reduction of its greenhouse gas emissions and has presented roadmaps depicting an overall decarbonisation of its economy by the middle of the century. In this context European policymakers and stakeholders are currently discussing the targets and the level of ambition of the 2030 climate and energy policy framework. The Commission is expected to present its own vision for the further development of the energy and climate policy framework in its White Paper "For a 2030 climate and energy policy framework". At this decisive point in the political debate the Wuppertal Institute presents a brief working paper that analyses some of the analytical work - particularly the underlying energy and GHG emission scenarios - behind the Commission's proposals to be presented in the forthcoming White Paper.
Zielsetzung des Forschungsprojektes war es, Klimaschutzszenarien für Deutschland zu entwickeln, die hinsichtlich ihres klimapolitischen Ziels, d.h. ihres langfristigen Emissionsminderungsbeitrags, im Wesentlichen gleich sind, die aber zum Teil auf unterschiedliche Optionen zur Reduktion der energiebedingten CO2-Emissionen setzen. Diese Klimaschutzszenarien wurden hinsichtlich sozioökonomischer und ökologischer Kriterien evaluiert und miteinander verglichen.
In der vorliegenden Studie steht die Forschungsfrage im Mittelpunkt, ob ein vollständig auf erneuerbaren Energien beruhendes Stromsystem mit hohen Importanteilen von rund 10 bis 20 % nach heutigem Stand des Wissens als technisch-ökologisch realisierbar angesehen werden kann. Als Grundlage für die Untersuchung wird in erster Linie auf eine Reihe von Szenariostudien zurückgegriffen, die ein weitgehend treibhausgasemissionsfreies, zu 90 bis 100 % auf regenerativer Erzeugung basierendes und von hohen Stromimportanteilen gekennzeichnetes Stromsystem mit dem Zeithorizont 2050 modellieren und beschreiben. Dabei werden analog zu Szenarien für Deutschland auch vorliegende Szenarien für Europa in den Blick genommen, die für den europäischen Kontinent wesentliche Nettostromimporte aus Nordafrika vorsehen.
In recent decades, better data and methods have become available for understanding the complex functioning of cities and their impacts on sustainability. This review synthesizes the recent developments in concepts and methods being used to measure the impacts of cities on environmental sustainability. It differentiates between a dominant trend in research literature that concentrates on the accounting and allocation of greenhouse gas emissions and energy use to cities and a reemergence of studies that focus on the direct and indirect material and resource flows in cities. The methodological approaches reviewed may consider cities as either producers or consumers, and all recognize that urban environmental impacts can be local, regional, or global. As well as giving an overview of the methodological debates, we examine the implications of the different approaches for policy and the challenges these approaches face in their application on the field.
This paper draws upon an extensive transdisciplinary scenario development in the context of the stakeholder oriented preparation of the climate protection plan of the German federal state North Rhine-Westphalia, which is home to the most important heavy industry cluster in Europe. In that context we developed differentiated bottom up climate change mitigation strategies and scenarios for the major energy intensive industries aluminium, iron and steel, cement, lime, paper and steam cracker for olefin production together with representatives of industry as well as society.
Dass die Energiewende überall in den Regionen erhebliche Dynamiken und Innovationen hervorruft, hat einmal mehr das Leuphana Energieforum 2014 gezeigt. Trotz des politischen Gegenwinds bleiben die Bürgerenergieakteure extrem wichtig für die Akzeptanz der Energiewende und deren erfolgreiche Ausdehnung auf Wärmebereitstellung und Verkehr.
Das Ziel dieser Untersuchung war, das technische Regelleistungspotenzial von BHKW in Deutschland für die Jahre 2010, 2020 und 2030 zu bestimmen. Der Fokus lag auf den kleineren Leistungsbereichen für die objektscharfe Versorgung von Wohngebäuden sowie von gewerblichen Objekten (Nichtwohngebäuden). Ergänzend wurde exemplarisch eine größere BHKW-Anlage mit Wärmenetz und ein industrieller Anwendungsfall untersucht.
Die Landesregierung in NRW hat am 14.4.2015 den in einem aufwändigen Stakeholderprozess erstellten Klimaschutzplan vorgestellt. Eines der Ziele war, die Klimaschutzpolitik als langfristige Strukturpolitik zu implementieren und entsprechende Prozesse in die Breite der Gesellschaft zu tragen. Weitere Bundesländer und der Bund selbst haben inzwischen ähnliche Prozesse eingeleitet. In zahlreichen anderen Ländern gibt es Beschlüsse, die in diese Richtung gehen. Eine Übersicht über den Prozess der Planerstellung in NRW und über den Stand der Diskussion in Deutschland verdeutlicht, wie Klimaschutzpläne durch partizipatorische Elemente in der Erstellungsphase mehr Akzeptanz erfahren können.
Nach einer langen Phase der Stabilität ist die Stromwirtschaft in den vergangenen 15 Jahren stark in Bewegung geraten. Zunächst stand der Wechsel von staatlich überwachten und regulierten Gebietsmonopolen hin zu liberalisierten Erzeuger- und Verbrauchermärkten an. Im Moment befinden wir uns in einem ähnlichen Umbruch, weg von konventioneller hin zu erneuerbarer Energieerzeugung.
Im vorliegenden Beitrag soll der Leitfrage nachgegangen werden, ob die Paradigmen der einzelnen Phasen miteinander vereinbar sind, welche noch immer ihre Daseinsberechtigung haben und welche modifiziert werden sollten.
Nach einer langen Phase der Stabilität ist die Stromwirtschaft in den vergangenen 15 Jahren stark in Bewegung geraten. Mit der Liberalisierung stand zunächst der Wechsel von Gebietsmonopolen hin zu wettbewerblich organisierten Erzeuger- und Verbrauchermärkten an. Derzeit findet ein ganz ähnlicher Umbruch statt, der vom Übergang von konventioneller hin zu erneuerbarer Stromerzeugung gekennzeichnet ist. Aber sind die Paradigmen der einzelnen Phasen miteinander vereinbar und hat jede für sich noch immer ihre Daseinsberechtigung, oder ist hier eine Modifizierung notwendig? Das Strommarktdesign der Zukunft kann nicht auf einem leeren Blatt entworfen, sondern es müssen bestehende Strukturen berücksichtigt werden. Gleichzeitig ist die Frage zu beantworten, ob die Wahl zwischen regulatorischen oder marktbasierten Ansätzen sich auch anhand der mit ihnen möglichen Präzision der Steuerung unterscheidet.
Due to significant success in technology development and cost reductions, the electricity system is now widely perceived as the part of the energy system to be first in decarbonisation. This means a double challenge for the system: Firstly, it will undergo significant change due to rapidly increasing shares of fluctuating renewable generation; Secondly, there will be an expansion of electricity into other fields of the energy system such as heat generation and transport.
The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of "re-industrialisation" for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry - such as electrification, hydrogen-based processes for steel, alternative cements or CCS - if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry.
The book shows that the implementation of a sustainable energy strategy in Iran provides the opportunity for further economic and social development. In this context, the aim of the book is to provide some of the analyses needed to rethink the country’s energy strategy and to grasp the chances. The authors hope to make a contribution to the emerging and rapidly growing discussion on better energy alternatives and the respective opportunities for investment, innovation and modernization. The work presented in the book should provide ideas for such opportunities and create a vision of how this could contribute towards developing a more sustainable, efficient and prosperous future energy system for Iran.
The book is based on long-term academic cooperation between Iranian researchers from several universities and the Iranian Energy Association and German researchers from the Wuppertal Institute, Büro Ö-quadrat and the University of Osnabrück. The book in hand is an important result of the collaboration. So its publication lends itself to taking stock of these twelve years of continued cooperation.
Heat integration and industrial symbiosis have been identified as key strategies to foster energy efficient and low carbon manufacturing industries (see e.g. contribution of Working Group III in IPCC's 5th assessment report). As energy efficiency potentials through horizontal and vertical integration are highly specific by site and technology they are often not explicitly reflected in national energy strategies and GHG emission scenarios. One of the reasons is that the energy models used to formulate such macro-level scenarios lack either the necessary high technical or the spatial micro-level resolution or both. Due to this lack of adequate tools the assumed huge existing potentials for energy efficiency in the energy intensive industry cannot be appropriately appreciated by national or EU level policies. Due to this background our paper describes a recent approach for a combined micro-macro energy model for selected manufacturing industries. It combines national level technical scenario modelling with a micro-modelling approach analogous to total site analysis (TSA), a methodology used by companies to analyse energy integration potentials on the level of production sites. Current spatial structures are reproduced with capacity, technical and energy efficiency data on the level of single facilities (e.g. blast furnaces) using ETS data and other sources. Based on this, both, the investments in specific technologies and in production sites are modelled and the evolvement of future structures of (interconnected) industry sites are explored in scenarios under different conditions and with different objectives (microeconomic vs. energy efficiency optimization). We further present a preliminary scenario that explores the relevance of these potentials and developments for the German steel industry.
Energy intensive industries are one of the fields in which strong increases of energy efficiency and deep decarbonisation strategies are particularly challenging. Although European energy intensive industries have already achieved significant energy and greenhouse gas reductions in the past, much remains to be done to make a significant contribution to achieving European as well as national climate mitigation targets of greenhouse gas emission reductions by -80% or more (compared to the baseline of 1990). North Rhine-Westphalia (NRW) is a European hotspot for coping with this challenge, accommodating more than 10% of the energy intensive industries of the EU28. It is also the first German state to have adopted its own Climate Law, enacting state-wide CO2 emission reductions by 80% until 2050 compared to 1990. The state government initiated the project "Platform Climate Protection and Industry North-Rhine Westphalia" to identify and develop the necessary far-reaching low carbon innovation strategies for energy intensive industries. Heart of the project was a dialogue process, which involved a broad spectrum of stakeholders from steel, chemical, aluminium, cement, glass and paper producing industries. Besides enhancing and broadening the knowledge on high efficiency and low-carbon technologies within industries, the aim was to explore possible pathways and preconditions for the application of these technologies in energy intensive industries as well as to strengthen the motivation of companies for initiatives and investments in technologies with lower CO2 emissions. The results of the dialogue shall provide a basis for a possible low-carbon industry roadmap NRW and may also serve as an example for other industrialized regions in the EU and globally. The paper sketches the structured dialogue process with the stakeholders from companies as well as industrial associations and presents the learnings regarding the engagement of energy intensive industries into ambitious climate policies on a regional level. These include existing limitations as well as chances in the respective sectors on the state level, regarding their economic and technical structures as well as their innovation systems. The findings are based on more than a dozen stakeholder workshops with industry companies and more than 150 individual representatives of NRW's energy intensive industries as well as on background research in the initial phase of the project.
On behalf of the Port of Rotterdam Authority, the Wuppertal Institute developed three possible pathways for a decarbonised port of Rotterdam until 2050. The port area is home to about 80 per cent of the Netherlands' petrochemical industry and significant power plant capacities. Consequently, the port of Rotterdam has the potential of being an international leader for the global energy transition, playing an important role when it comes to reducing CO2 emissions in order to deliver on the EU's long-term climate goals.
The three decarbonisation scenarios all built on the increasing use of renewables (wind and solar power) and the adoption of the best available technologies (efficiency). The analysis focuses on power plants, refineries and the chemical industry, which together are responsible for more than 90 per cent of the port area's current CO2 emissions.
The decarbonisation scenarios describe how CO2 emissions could be reduced by 75 to 98 per cent in 2050 (compared to 2015). Depending on the scenario, different mitigation strategies are relied upon, including electrification, closure of carbon cycles or carbon capture and storage (CCS). The study includes recommendations for local companies, the Port Authority as well as policy makers. In addition, the study includes a reference scenario, which makes it clear that a "business as usual" mentality will fall well short of contributing adequately to the EU's long-term climate goals.
The Greens / European Free Alliance Group of the European Parliament contracted Wuppertal Institute in collaboration with Energiaklub to develop scientifically sound, comprehensive, alternative, and sustainable long term energy scenarios for Hungary, which cover potential development paths till 2030 and 2050. The scenarios developed deliver information about the costs and long-term effects of different energy choices for Hungary as well as credible information on potential benefits of greening the energy mix. As a result, the study aims to provide policy makers with better evidence for making informed, prudent and forward-thinking decisions in this field.
The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels.
Sustainable energy systems
(2016)
Die Transformation des Energieversorgungssystems zu einer dekarbonisierten Energiebereitstellung bedingt ein koordiniertes Zusammenspiel der Sektoren Strom, Wärme und Verkehr. Dabei ist die Kopplung des Stromsektors mit dem Wärmesektor eine der entscheidenden Maßnahmen bei der Transformation. Die Aufnahme von Wind- und Sonnenenergie in das Netz kann durch genaue Einspeiseprognosen optimiert werden, die Kopplung zum Wärmesektor mittels Wärmepumpen und Power-to-Heat (Heizstab) ermöglicht die weitere Flexibilisierung der Nachfrageseite. Diese Interaktion wird durch intelligente Lösungen der Systemtechnik für das Energie- und Netzmanagement ermöglicht. Die Entwicklung von entsprechenden Anreizsystemen, Marktmechanismen und Geschäftsmodellen ist ebenfalls erforderlich, um diese Kopplung auch wirtschaftlich erfolgreich zu gestalten. Der Beitrag stellt das im Forschungsvorhaben "Interaktion EE-Strom, Wärme und Verkehr" erstellte 80-Prozent-Szenario für das Jahr 2050 vor und zeigt anhand von Beispielen zukünftige Anforderungen und Entwicklungen zu dieser Thematik auf.
Participatory scenario processes : a tool for mutually shaping the future and social learning
(2017)
In October 2014, the European Council agreed on a target of improving overall energy efficiency by at least 27 per cent by 2030. According to the European Council's conclusions, this target should not be translated into nationally binding targets. Nevertheless individual Member States are free to set higher national objectives if desired. However, it is difficult to assess the degree of ambition of a national target because so far not much light has been shed upon the exact size of the untapped efficiency potentials.
This paper provides an in-depth analysis and comparison of existing studies on energy efficiency potentials in the European Union's (EU) Member States by 2030. It includes a structured overview of the results, information on the quality of the available data and suggestions for improvement.
The review shows that comprehensive studies on national energy efficiency potentials are rare and hardly comparable. The existing studies agree on the existence of significant potentials for energy efficiency. Their outcomes, however, vary significantly in terms of national levels. Assuming low policy intensity, energy savings between 10 and 28 per cent could be realised by 2030 compared to a baseline development, in the case of high policy intensity 7-44 per cent. Technical energy efficiency potentials in the different EU Member States are estimated at 14-52 per cent. On average, energy savings of 27 per cent by 2030 appear to be feasible with significant policy effort. We conclude that the deviation in Member States' energy efficiency potentials resulting from different studies represents an indication of the so far poor quality of underlying data. In order to allow for a concretisation of efficiency potential estimates, the comparability and detail of information sources should be improved.
Energy-intensive processing industries (EPIs) produce iron and steel, aluminum, chemicals, cement, glass, and paper and pulp and are responsible for a large share of global greenhouse gas emissions. To meet 2050 emission targets, an accelerated transition towards deep decarbonization is required in these industries. Insights from sociotechnical and innovation systems perspectives are needed to better understand how to steer and facilitate this transition process. The transitions literature has so far, however, not featured EPIs. This paper positions EPIs within the transitions literature by characterizing their sociotechnical and innovation systems in terms of industry structure, innovation strategies, networks, markets and governmental interventions. We subsequently explore how these characteristics may influence the transition to deep decarbonization and identify gaps in the literature from which we formulate an agenda for further transitions research on EPIs and consider policy implications. Furthering this research field would not only enrich discussions on policy for achieving deep decarbonization, but would also develop transitions theory since the distinctive EPI characteristics are likely to yield new patterns in transition dynamics.
Following the decisions of the Paris climate conference at the end of 2015 as well as similar announcements e.g. from the G7 in Elmau (Germany) in the summer of 2015, long-term strategies aiming at (almost) full decarbonisation of the energy systems increasingly move into the focus of climate and energy policy. Deep decarbonisation obviously requires a complete switch of energy supply towards zero GHG emission sources, such as renewable energy. A large number of both global as well as national climate change mitigation scenarios emphasize that energy efficiency will likewise play a key role in achieving deep decarbonization. However, the interdependencies between a transformation of energy supply on the one hand and the role of and prospects for energy efficiency on the other hand are rarely explored in detail.
This article explores these interdependencies based on a scenario for Germany that describes a future energy system relying entirely on renewable energy sources. Our analysis emphasizes that generally, considerable energy efficiency improvements on the demand side are required in order to have a realistic chance of transforming the German energy system towards 100 % renewables. Efficiency improvements are especially important if energy demand sectors will continue to require large amounts of liquid and gaseous fuels, as the production of these fuels are associated with considerable energy losses in a 100 % renewables future. Energy efficiency on the supply side will therefore differ considerably depending on how strongly the use of liquid and gaseous fuels in the various demand sectors can be substituted through the direct use of electricity. Apart from a general discussion of the role of energy efficiency in a 100 % renewable future, we also look at the role of and prospects for energy efficiency in each individual demand sector.
In spite of current multiple political crises, global warming will remain a prime issue on the global agenda. The adoption of the Paris Agreement in 2015 and its quick ratification in 2016 have created a strong momentum for worldwide action against climate change. As global greenhouse gas emissions must decline towards levels close to zero by the middle of the century, the rapid decarbonisation of energy systems is high on the agenda of most countries around the globe.
This publication delivers insights into cutting edge research on the necessary transitions towards low carbon societies and by this aims to contribute to international as well as national policymaking.
The topics covered in more than 20 concise original articles are among the most important issues for progressing solutions for climate change and sustainable development. The papers discuss recent findings and case studies in the following subject areas:
Governance of the necessary long-term transitions in the context of potential known and unknown adverse developments;
Policy instruments and strategies that allow for financing the transition to low carbon economies and, at the same time, respond to today's economic and social challenges;
Integrated strategies for three of the most important arenas of global decarbonisation: Cities, as much of the change and necessary investment for low carbon societies must take place, be planned, be financed and be built in cities; industry, particularly the energy-intensive processing industries, which are at the core of society's metabolism and are responsible for a large and growing share of global emissions and science as a whole, which must become more solutions-oriented because the transitions needed will rely heavily on research providing solutions for technological as well as societal problems.
As a contribution to these great challenges and at the request of the G7 Environment Ministers, the Low Carbon Society Research Network (LCS-RNet) acts as a forum aimed at fostering research and policymaking to jointly achieve decarbonised energy systems in countries around the world. It convenes leading scientists, practitioners and policymakers and aims at supporting governments in proceeding jointly towards the design and implementation of climate-friendly low carbon societies.
The German federal state of North Rhine-Westphalia (NRW) is home to important clusters of energy-intensive basic materials industries. 15% of the EU's primary steel as well as 15% of high-value base chemicals are produced here. Together with refinery fuels, cement, lime and paper production (also overrepresented in NRW) these are the most carbon-intensive production processes of the industrial metabolism. To achieve the ambitious regional and national climate goals without relocating these clusters, carbon-neutral production will have to become standard by mid-century. We develop and evaluate three conceptual long-term scenarios towards carbon-neutral industry systems for NRW for 2050 and beyond:
* a first scenario depending on carbon capture and storage or use for heavy industries (iCCS),
* a second scenario sketching the direct electrification of industrial processes (and transport) and
* a third scenario relying on the import of low carbon energies (e.g. biomass, and synthetic fuels (like methanol) for the use in industries and transport. All scenarios share the assumption that electricity generation will be CO2-neutral by 2050.
For all three scenarios energy efficiency, primary energy demand for energy services and feedstock as well as the carbon balance are quantified. We apply a spatial-explicit analysis of production sites to allow for discussion of infrastructure re-use and net investment needs. Possible symbiotic relations between sectors are also included. The robustness of the three conceptualised future carbon-neutral industry systems is then analysed using a multi-criteria approach, including e.g. energy security issues and lock-ins on the way to 2050.
The Port of Rotterdam is an important industrial cluster mainly comprising of oil refining, chemical manufacturing and power and steam generation. In 2015, the area accounted for 18 % of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the port's economy is heavily exposed to future global and EU decarbonization policies, as the bulk of its activities focuses on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority, our paper explores possible pathways of how the industrial cluster can keep its strong market position in Europe and still reduce its CO2 emissions by 98 % by 2050. The "Biomass and CCS" scenario assumes that large amounts of biomass can be supplied sustainably and will be used in the port for power generation as well as for feedstock for refineries and the chemical industry. Fischer-Tropsch fuel generation plays an important role in this scenario, allowing the port to become a key cluster for the production of synthetic fuels and feedstocks in Western Europe. The "Closed Carbon Cycle" scenario assumes that renewables-based electricity will be used at the port to supply heat and hydrogen for the synthetic generation of feedstock for the chemical industry. The carbon required for the chemicals will stem from recycled waste. Technologies particularly needed in this scenario are water electrolysis and gasification or pyrolysis to capture carbon from waste, as well as technologies for the production of base chemicals from syngas. The paper compares both scenarios with regard to their respective technological choices and infrastructural changes. The scenarios’ particular opportunities and challenges are also discussed. Using possible future pathways of a major European petrochemical cluster as an example, the paper illustrates options for deep decarbonisation of energy intensive industries in the EU and beyond.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
The Paris Agreement calls on all nations to pursue efforts to contribute to limiting the global temperature increase to 1.5 °C above pre-industrial levels. However, due to limited global, regional and country-specific analysis of highly ambitious GHG mitigation pathways, there is currently a lack of knowledge about the transformational changes needed in the coming decades to reach this target. Through a meta-analysis of mitigation scenarios for Germany, this article aims to contribute to an improved understanding of the changes needed in the energy system of an industrialized country. Differentiation among six key long-term energy system decarbonization strategies is suggested, and an analysis is presented of how these strategies will be pursued until 2050 in selected technologically detailed energy scenarios for Germany. The findings show, that certain strategies, including the widespread use of electricity-derived synthetic fuels in end-use sectors as well as behavioral changes, are typically applied to a greater extent in mitigation scenarios aiming at high GHG emission reductions compared to more moderate mitigation scenarios. The analysis also highlights that the pace of historical changes observed in Germany between 2000 and 2015 is clearly insufficient to adequately contribute to not only the 1.5 °C target, but also the 2 °C long-term global target.
The production of commodities by energy-intensive industry is responsible for 1/3 of annual global greenhouse gas (GHG) emissions. The climate goal of the Paris Agreement, to hold the increase in the global average temperature to well below 2 °C above pre-industrial levels while pursuing efforts to limit the temperature increase to 1.5 °C, requires global GHG emissions reach net-zero and probably negative by 2055-2080. Given the average economic lifetime of industrial facilities is 20 years or more, this indicates all new investment must be net-zero emitting by 2035-2060 or be compensated by negative emissions to guarantee GHG-neutrality. We argue, based on a sample portfolio of emerging and near-commercial technologies for each sector (largely based on zero carbon electricity & heat sources, biomass and carbon capture, and catalogued in an accompanying database), that reducing energy-intensive industrial GHG emissions to Paris Agreement compatible levels may not only be technically possible, but can be achieved with sufficient prioritization and policy effort. We then review policy options to drive innovation and investment in these technologies. From this we synthesize a preliminary integrated strategy for a managed transition with minimum stranded assets, unemployment, and social trauma that recognizes the competitive and globally traded nature of commodity production. The strategy includes: an initial policy commitment followed by a national and sectoral stakeholder driven pathway process to build commitment and identify opportunities based on local zero carbon resources; penetration of near-commercial technologies through increasing valuation of GHG material intensity through GHG pricing or flexible regulations with protection for competitiveness and against carbon leakage; research and demand support for the output of pilot plants, including some combination of guaranteed above-market prices that decline with output and an increasing requirement for low carbon inputs in government procurement; and finally, key supporting institutions.
Nach den G7-Beschlüssen von Elmau und dem Klimaabkommen von Paris im Jahr 2015 ist das Thema der langfristigen Dekarbonisierung der Energiesysteme der Industrieländer in den Vordergrund der politischen und wissenschaftlichen Diskussion gerückt. Japan und Deutschland stehen als führende Industrienationen vor ähnlichen Herausforderungen, gleichzeitig können sich aber auch für beide Länder wirtschaftliche Entwicklungschancen aus der Dekarbonisierung ergeben. Aus diesem Grund bietet sich eine verstärkte Kooperation und die Initiierung gegenseitiger Lernprozesse besonders an. Die vorliegende Metaanalyse ambitionierter Klimaschutzszenarien für Japan und Deutschland stellt mit der Diskussion von langfristigen Dekarbonisierungsstrategien in beiden Ländern einen ersten Schritt in diese Richtung dar.
Die quantitative Analyse hat gezeigt, dass die Untersuchungsschwerpunkte der Szenarien - sowohl für Deutschland als auch für Japan - vielfach auf den THG-Emissionen des Energiesystems liegen. Die THG-Emissionen anderer Sektoren werden seltener und wenn, dann oft in geringerer Detailtiefe berücksichtigt. Der Vergleich von ambitionierten Dekarbonisierungsszenarien mit THG-Minderungszielen von 80 bis 100 Prozent zeigt in vielen Bereichen für Japan und Deutschland tendenziell recht ähnliche Entwicklungen und Strategien auf. Es wird deutlich, dass in beiden Ländern erhebliche Änderungen insbesondere im Energiesystem notwendig sind, um die anvisierten mittel- und langfristigen THG-Minderungsziele zu erreichen. Es werden ähnliche Annahmen zu Bevölkerungsentwicklung und Wirtschaftsentwicklung getroffen und es werden vergleichbare Entwicklungstrends bei vielen Ausprägungen des Energiesystems deutlich. Unterschiede zwischen den deutschen und japanischen Szenarien sowie zwischen den Szenarien der einzelnen Länder bestehen hingegen vor allem in Bezug auf Geschwindigkeit, Umfang und die Zusammensetzung der Strategieelemente.
Die voranschreitende Umstellung des Energiesystems von einer "additiven Rolle" regenerativer Energien hin zu deren Dominanz wirft zahlreiche Fragestelllungen auf, für deren Beantwortung in zunehmendem Maße Modellierungsansätze gewählt werden. Vor diesem Hintergrund ist in den letzten Jahren eine große Anzahl von modellbasierten Szenarioanalysen des deutschen Energiesystems entstanden. Da sie zum Teil sehr unterschiedliche Ergebnisse erzielen, die nur schwer miteinander vergleichbar sind, erschwert dies die Weiterentwicklung des Zukunftswissens zur Energiewende und auch die gegenseitige Qualitätssicherung der Ergebnisse.
Vor diesem Hintergrund hat das Wuppertal Institut zusammen mit den Partnern Fraunhofer ISE und DLR das RegMex-Projekt durchgeführt. Ziel des Projektes war zum einen die inhaltliche Weiterentwicklung der Diskussion zur Ausgestaltung der Energiewende. Zum anderen sollte durch den Modellvergleich eine höhere Transparenz der teilnehmenden Modelle erreicht werden, um die Implikationen und Auswirkungen verschiedener Modellansätze besser differenzierten zu können.
Im Modellexperiment 1 wurden für zwei Szenarien (Zielszenario und Ambitioniertes Szenario) das Gesamtsystem mit Hilfe von drei Energiesystemmodellen und im Modellexperiment 2 das Stromsystem und flexible Sektorenkopplung mit Hilfe von vier Stromsystemmodellen modelliert. In einem weiteren Arbeitspaket wurden "Disruptive Elemente" identifiziert und analysiert, die gravierende Auswirkungen auf das Energiesystem haben können. Die Modellexperimente zeigen klar, dass die Einordnung und Interpretation von Modellergebnissen nicht losgelöst von den Modellen und deren methodischen Unterschieden erfolgen darf.
The Port of Rotterdam is one of the pioneers in the reduction of greenhouse gas emissions. It is the largest port in Europe and extends over 40 kilometres to the North Sea coast. Its ambitious goal: the port wants to reduce greenhouse gas emissions from its industrial cluster as well as from freight traffic to a large extent. For the study "Deep Decarbonisation Pathways for Transport and Logistics Related to the Port of Rotterdam" the Wuppertal Institute analysed available options for the maritime as well was hinterland transports on behalf of the Rotterdam Port Authority.
The 2050 scenarios by the Wuppertal Institute show that decarbonisation will significantly change both, volume and structure of the transported goods - which add to the on-going trend from bulk to container transport. This will have considerable structural effects on port operations and in particular on hinterland traffic. A comprehensive decarbonisation (>95 per cent) will require significant efficiency improvements through operational and technical measures and the switch to non-fossil fuels, as well as a strong shift of container transport from road transport to rail and inland navigation. For maritime shipping to and from Rotterdam two feasible pathways towards full decarbonisation by 2050 are presented. Both include a stepwise shift towards renewable electricity based energy carriers for ships (liquids and gaseous for long distances and hydrogen and electricity for shorter distances).
Finally the report derives a set of recommendations for the Port Authority as well as the Dutch, German and European policymakers to support the transition towards a drastic reduction of greenhouse gase (GHG) emissions from in the transport sector and for using this as a strategy for a sustainable economic development.
Relevante Fragen rund um die Möglichkeiten und Erfordernisse der Reduzierung und Beendigung der Kohleverstromung werden seit mehreren Jahren diskutiert. Dabei sind eine Fülle von Strategien, Analysen und Argumenten entwickelt worden, wie die Reduzierung und Beendigung der energetischen Nutzung von Kohle auf der Zeitachse umgesetzt und strukturpolitisch flankiert werden könnte. Der vorliegende "Kohle-Reader" greift die vorliegenden Analysen auf und gibt einen Überblick über den Diskussionsstand. Er soll über Fakten und Zusammenhänge informieren, das Für und Wider für einzelne Handlungsoptionen benennen und dazu den jeweiligen wissenschaftlichen Hintergrund aufzeigen. Er hat den Anspruch wissenschaftlich-neutral zu sein und er soll in Sprache und Darstellung prägnant und für die nicht zuvor im Detail mit den Themen befassten Leserinnen und Leser gut verständlich sein, ohne unzulässig zu verkürzen oder zuzuspitzen.
Aufgrund der perspektivisch insbesondere mit dem benötigten weiteren Ausbau der erneuerbaren Energien verbundenen weiter zunehmenden Auswirkungen der Energiesystemtransformation auf Landschaft und Ökosysteme erscheint es angemessen, dass Politik und Gesellschaft die Naturverträglichkeit der Energiewende bzw. ihrer konkreten Ausgestaltung stärker in den Blick nehmen als bisher. Denn eine angemessene Berücksichtigung und darauf aufbauende weitest mögliche Minderung der negativen Einflüsse von Energiewende-Maßnahmen auf die Natur ist aus verschiedenen Gründen von Bedeutung: Zum einen ist die gesellschaftliche Akzeptanz für das Gelingen der Energiewende entscheidend und eine weitgehend naturverträgliche Ausgestaltung der Energiewende kann diese Akzeptanz befördern. Zum anderen sind intakte Ökosysteme für das menschliche Wohlergehen von hoher Bedeutung und es kann darüberhinaus argumentiert werden, dass ihnen unabhängig vom Wert für den Menschen auch ein intrinsischer Wert zugesprochen werden sollte. (Zusätzliche) Ökosystemstörungen sollten folglich so weit wie möglich vermieden werden.
Vor diesem Hintergrund hat der Naturschutzbund Deutschland e.V. das Wuppertal Institut beauftragt, in dem vorliegenden Bericht mögliche Maßnahmen zu identifizieren und zu beschreiben, die sowohl wesentliche Beiträge zur Erreichung der Ziele der Energiewende leisten können, deren Umsetzung gleichzeitig aber nach derzeitigem Wissensstand keine oder nur geringe negative Auswirkungen auf die Natur hätte. Der Bericht soll dabei helfen, die Aufmerksamkeit auf gegenwärtig nicht ausgeschöpfte, von der Energiepolitik und auch von vielen vorliegenden Energiewende-Studien nicht oder wenig beachtete aber wahrscheinlich naturschutzgerechtere Klimaschutzoptionen zu richten und diese Optionen besser zu verstehen.
This study intends to provide a comprehensive overview of the water-energy nexus' relevance to the Iranian electricity sector, by illustrating key trends, analysing water-related challenges and identifying knowledge gaps. It summarises the results of a workshop, and a series of dialogues with Iranian energy and water experts, in which both the current situation and future water-related risks and impacts on the Iranian power sector were discussed. Based on those results, it highlights research needs and further options for scientific collaboration.
Zur Realisierung der europäischen Klimaschutzziele muss der Industriesektor, besonders die energieintensive Grundstoffindustrie, seine Treibhausgasemissionen stark reduzieren. Obwohl in der Vergangenheit bereits große Fortschritte erzielt wurden, sind in Zukunft weitere, teils bahnbrechende Innovationen und der Aufbau der dafür benötigten Infrastruktur erforderlich. Im Rahmen dieses Projekts stellt das Wuppertal Institut für die "European Climate Foundation" den aktuellen Wissensstand zum Thema zusammen, diskutiert diesen vor dem Hintergrund der aktuellen Situation für Nordrhein-Westfalen (NRW), erstellt konsistente mögliche Zukunftsszenarien für NRW und leitet Schlüsselfragen und weiteren Forschungsbedarf für die Region ab.
Im Forschungsprojekt "Landscaping" untersuchte das Wuppertal Institut die für Nordrhein-Westfalen aus heutiger Sicht denkbaren Technologieansätze, die dafür nötigen politischen Rahmenbedingungen sowie mögliche Innovationen entlang der Wertschöpfungsketten. Bestandteil des Berichts sind Steckbriefe, in denen die möglichen Technologien für treibhausgasneutrale Industrieprozesse samt offener Forschungsfragen und Infrastrukturbedarfe dargestellt sind. Das Projekt entstand im Auftrag des Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.
Phasing out coal in the German energy sector : interdependencies, challenges and potential solutions
(2019)
Relevant aspects of the options and requirements for reducing and phasing out coal-fired power generation have been under debate for several years. This process has produced a range of strategies, analyses and arguments, outlining how coal use in the energy sector could be reduced and phased out in the planned time frame, and determining structural policy measures suitable to support this. This Coal Report studies the existing analyses and provides an overview of the state of debate. It is intended to provide information on facts and contexts, present the advantages and disadvantages of individual courses of action, and reveal the respective scientific backgrounds. It strives to take a scientific and independent approach, and present facts in concise language, making it easy to follow for readers who are not experts in the field, without excessive abridgements or provocative statements.
Unter den Stichworten "Sektorenkopplung" und "Power-to-X" werden derzeit viele Möglichkeiten der direkten und indirekten Elektrifizierung großer Teile der Endenergienachfrage intensiv diskutiert. In diesem Zusammenhang hat die Diskussion um Wasserstoff als Endenergieträger sowie als Feedstock für die Herstellung von synthetischen Kraftstoffen und chemischen Grundstoffen zuletzt stark an Bedeutung gewonnen. Insbesondere der klimaneutrale Umbau der Grundstoffindustrien und hier vor allem der Grundstoffchemie und der Stahlindustrie würde bedeutende Mengen an grünem Wasserstoff benötigen, die räumlich stark auf die großen Industriekerne fokussiert wären. Ein zeitnaher Einstieg in die Schaffung entsprechender Erzeugungskapazitäten und Infrastrukturen könnte dazu führen, dass Wasserstoff - neben erneuerbaren Energien und Energieeffizienz - zum dritten Standbein der Energiewende avanciert.
On 26 January 2019, the Commission on Growth, Structural Change and Employment recommended that no more coal-fired power plants would be operated in Germany by 2038 at the latest. In this paper the Wuppertal Institute comments on the results of the Commission and makes recommendations for the current necessary steps for the climate and innovation policy in Europe, Germany and North Rhine-Westphalia.
Am 26. Januar 2019 hat die Kommission "Wachstum, Strukturwandel und Beschäftigung" beschlossen, dass in Deutschland bis spätestens 2038 keine Kohlekraftwerke mehr betrieben werden sollen. Das Wuppertal Institut nimmt in diesem Papier Stellung zu den Ergebnissen der Kommission und gibt Empfehlungen für die nun notwendigen Schritte für die Klima- und Innovationspolitik in Europa, Deutschland und Nordrhein-Westfalen.
Weltweit trägt die Industrie direkt und indirekt etwa über ihren Bezug von Strom und Wärme rund 30 bis 40 Prozent zu den Treibhausgasemissionen bei. Auch in Deutschland liegt ihr Beitrag in einer ähnlichen Größenordnung1. Dabei sind insbesondere die Grundstoffindustrien (Stahl, Zement, Grundstoffchemie, Glas, Aluminium, Papier und andere) besonders energie- und emissionsintensiv. Gleichzeitig basiert der Energieeinsatz dieser Industrien bisher noch überwiegend auf fossilen Energien (und Müll). Zu den energiebedingten Emissionen kommen prozessbedingte Emissionen hinzu, die sich bei den heute üblichen Verfahren selbst bei Einsatz vollständig "grüner" Energien nicht vermeiden lassen. Grundstoffindustrien stellen Materialien für die Herstellung und Verarbeitung von Produkten zur Verfügung. Sie sind daher kein Selbstzweck, sondern tragen letztlich damit dazu bei, vielfältige Bedürfnisse abzudecken.
New options are needed to reduce the impact of motor vehicles on climate change and declining fossil fuel resources. Cars which are fueled by hydrogen could be a sustainable method of transportation if suitable technologies can be devised to produce hydrogen in an environmentally benign manner along with the provision of the necessary fueling infrastructure. This paper assesses size, space, and cost requirements of bioreactors as a decentralized option to supply hydrogen powered cars with biohydrogen produced from algae or cyanobacteria on a theoretical basis. Decentralized supply of biohydrogen could help to reduce the problems that hydrogen cars face regarding market penetration. A feasibility study for decentralized biohydrogen production is conducted, taking the quantity of hydrogen which is needed to fuel current hydrogen cars into account. While this technology is, in theory, feasible, sizes, and costs of such reactors are currently too high for widespread adoption. Thus, more R&D is needed to close the gap and to approach marketability.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
Die in Paris Ende 2015 beschlossene Vereinbarung gibt das Ziel vor, die Erderwärmung bis 2100 auf deutlich unter 2 Grad Celsius zu begrenzen, möglichst aber auf unter 1,5 Grad Celsius. Die vorliegende Studie setzt sich mit der Frage von Fridays for Future Deutschland auseinander, welche Dimension von Veränderungen im deutschen Energiesystem erforderlich wären, um einen angemessenen Beitrag für das Erreichen der 1,5-Grad-Grenze leisten zu können. Nach Abschätzung des Weltklimarates, dem Intergovernmental Panel on Climate Change (IPCC), lassen sich mit dieser Temperaturgrenze die Risiken und Auswirkungen des Klimawandels gegenüber einer stärkeren Erderwärmung erheblich verringern.
Die Autorinnen und Autoren haben dabei den Budgetansatz des Sachverständigenrats für Umweltfragen (SRU) der Bundesregierung zugrunde gelegt. Um das 1,5-Grad-Ziel mit einer Wahrscheinlichkeit von 50 Prozent zu erreichen, ist das Restbudget an damit verträglichen Treibhausgasemissionen eng begrenzt. Für Deutschland bleibt gemäß des Sachverständigenrats für Umweltfragen ab dem Jahr 2020 noch ein Restbudget von 4,2 Gigatonnen CO2. Dabei geht der Sachverständigenrat von der Annahme aus, dass auf globaler Ebene jedem Menschen für die Zukunft ein gleiches Pro-Kopf-Emissionsrecht zugestanden werden soll. Mit dieser Klimaschutzvorgabe geht er deutlich weiter als die aktuellen politischen Vorgaben der Europäischen Union und der Bundesregierung, die diese für sich aus den Pariser Klimaschutzvereinbarungen ableiten.
Die vom SRU formulierte Zielmarke lässt sich einhalten, wenn das Energiesystem (Energiewirtschaft, Industrie, Verkehr und Gebäudewärme) bis zum Jahr 2035 CO2-neutral aufgestellt wird und die Emissionen insbesondere in den nächsten Jahren bereits überproportional stark gesenkt werden können.
Die vorliegende Studie untersucht die technische und in gewissem Maße auch die ökonomische Machbarkeit einer Transformation zur CO2-Neutralität bis 2035. Ob sich dieses Ziel jedoch tatsächlich realisieren lässt, hängt auch maßgeblich von der gesellschaftlichen Bereitschaft und einem massiven politischen Fokus auf die notwendige Transformation ab. Die Studie gibt somit Aufschluss darüber, inwiefern es grundlegende technologische und wirtschaftliche Hindernisse für die CO2-Neutralität 2035 gibt; nicht jedoch ob die Umsetzung realpolitisch tatsächlich gelingen kann bzw. was dafür im Einzelnen getan werden muss. Neben den technischen und ökonomischen Herausforderungen einer Transformation hin zu CO2-Neutralität bestehen zentrale Herausforderungen auch in institutioneller und kultureller Hinsicht, zum Beispiel bei Themen wie der Akzeptanz für einen starken Ausbau von Erneuerbaren-Energien-Anlagen und von Energieinfrastrukturen oder hinsichtlich der Notwendigkeit eines deutlich veränderten Verkehrsverhaltens.
Die Grundstoffindustrie steht derzeit vor großen Herausforderungen. Die Unternehmen müssen die akuten dramatischen Folgen der Coronakrise bewältigen, aber auch bereits in den nächsten Jahren in neue klimafreundliche Technologien investieren, um das Ziel einer klimaneutralen Wirtschaft im Jahr 2050 zu erreichen. Im Fachforum Energieintensive Grundstoffindustrie beim Grünen Wirtschaftsdialog diskutierten Akteure aus Wirtschaft, Politik und Wissenschaft, welche politischen Instrumente die Transformation der Industrie unterstützen und die notwendigen Investitionen ermöglichen können. Vom Wuppertal Institut wurde für das Fachforum ein Scoping Paper erstellt, welches den Stand der aktuellen Fachdiskussion zu zentralen Politikinstrumenten zusammenfasst und die wichtigsten offenen Ausgestaltungsfragen diskutiert. Das Papier wurde im Austausch mit den Akteuren im Fachforum entwickelt und in mehreren Sitzungen des Forums vorgestellt und diskutiert. Inhaltlicher Schwerpunkt sind Instrumente für faire internationale Wettbewerbsbedingungen, Carbon Contracts for Difference, und Ansätze für Energiepreisreformen.
Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienzsteigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbsumfeld behalten?
Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen.
Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
Die Europäische Union (EU) hat erkannt, dass das Ziel der Klimaneutralität bis 2050 ein zentraler Innovations- und Wachstumsmotor für Industrie und Wirtschaft in der EU sein kann. Neben großen Chancen stellt dies die europäische Wirtschaft und überwiegend die besonders emissionsintensiven sowie im international starkem Wettbewerb stehenden Grundstoffindustrien auch vor erhebliche Herausforderungen.
Eine integrierte Klima- und Industriestrategie ist für den Klimaschutz von zentraler Bedeutung, da auf die Produktion von Stahl, Zement, Grundstoffchemikalien, Glas, Papier und anderen Materialien in der EU und weltweit rund 20 Prozent der gesamten Treibhausgasemissionen entfallen. Auch in einer treibhausgasneutralen Zukunft kann auf diese Materialien nicht verzichten werden. Zugleich ist die emissionsfreie Herstellung der Materialien technologisch sowie mit Blick auf die dafür erforderlichen Infrastrukturen besonders herausfordernd. Dies gilt vor allem für die Frage woher die hohen benötigten Mengen an grüner Energie - insbesondere Strom und Wasserstoff - zu wettbewerbsfähigen Preisen kommen sollen. Analysen zeigen, dass trotz erheblicher Kosten bei der Prozessumstellung die Kosten der Transformation der Grundstoffindustrie für die Gesellschaft insgesamt tragbar sind. Denn bezogen auf die Endprodukte betragen die Mehrkosten meist nur wenige Prozentpunkte; die Preise von Rohstahl oder Zement dagegen würden sich zwischen einem Drittel und 100 Prozent verteuern. Da fast alle Grundstoffhersteller in starker Weltmarktkonkurrenz stehen, können sie die Investitionen in eine klimaneutrale Produktion und die benötigten Energieinfrastrukturen aber nicht ohne Unterstützung tragen.
Das vorliegende Papier skizziert ein integriertes Klima-Industriepolitikpaket, das der EU ermöglichen kann, die bestehende technologische Führung in vielen dieser Industrien zielgerichtet zum Aufbau einer treibhausgasneutralen Grundstoffindustrie zu nutzen.
Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden.
Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert.
Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
The European Union (EU) has established that the goal of achieving climate neutrality by 2050 as a key driver of innovation and growth for industry and the economy in the EU. In addition to offering great opportunities, this also poses considerable challenges for the European economy and, for the most part, for basic industries, which are particularly emission-intensive and face strong international competition.
An integrated climate and industry strategy is of central importance to protecting the climate, since the production of steel, cement, basic chemicals, glass, paper, and other materials in the EU and worldwide accounts for roughly one fifth of total greenhouse gas emissions. Even in a greenhouse gas-neutral future, we will not be able to fully eliminate our need for these materials. At the same time, it is particularly challenging to produce these materials without creating emissions given the state of technology and the necessary infrastructures. This applies above all to the question of how large amounts of green energy, including electricity and hydrogen, can be produced at competitive prices. Analyses show that despite the considerable costs involved in process changeover, the costs of transforming the raw materials industry are acceptable to society as a whole, given that the additional costs usually only increase the price of the end products by a few percentage points. However, in the case of crude steel or cement, the price would increase by between one third and 100 per cent. Since almost all raw materials manufacturers face strong global market competition, in most cases they are not able to bankroll the investments in climate-neutral production and the required energy infrastructure without outside support.
This paper outlines an integrated climate industrial policy package that allows the EU to utilise its existing technological leadership in many of these industries to build a greenhouse gas-neutral raw materials industry.
The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions.
A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels?
In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations.
Minderungspfade
(2021)
Damit sich die weltweit zunehmend ambitionierten Klimaschutzziele erreichen lassen, müssen auch im Industriesektor weitgehende Emissionsreduktionen innerhalb weniger Jahrzehnte realisiert werden. Expertinnen und Experten sind sich einig, dass dies nicht ohne den Umstieg von fossilen auf erneuerbare Energieträger und Rohmaterialien - sogenannte Feedstocks - umsetzbar ist. Im Zuge der verstärkten Nutzung dieser grünen Energieträger ist denkbar, dass sich deren Verfügbarkeit und Kosten zu immer wichtigeren Standortfaktoren für die Produktion industrieller Güter entwickeln werden. Dies könnte dazu führen, dass zukünftig Standorte mit kostengünstiger Verfügbarkeit von erneuerbaren Energien attraktiver gegenüber anderen Standorten werden und es dann zu Standortverlagerungen kommt - insbesondere im Bereich der energieintensiven Industrie.
In dem vorliegenden Artikel greifen die Autoren diese möglichen Verlagerungen industrieller Produktion auf. In diesem Zusammenhang führen sie auch den Begriff "Renewables Pull" ein. Die in bestimmten Regionen der Welt kostengünstig und in großen Mengen verfügbaren erneuerbaren Energien könnten nach Ansicht der Autoren künftig eine Sogwirkung auslösen und bestimmte Teile der industriellen Produktion anziehen - auch Pull-Effekt genannt.
This report was prepared by the Wuppertal Institute in cooperation with the German Economic Institute as part of the SCI4climate.NRW project. The report aims to shed light on the possible phenomenon that the availability and costs of "green" energy sources may become a relevant location factor for basic materials produced in a climate-neutral manner in the future.
For this purpose, we introduce the term "Renewables Pull". We define Renewables Pull as the initially hypothetical phenomenon of a shift of industrial production from one region to another as a result of different marginal costs of renewable energies (or of secondary energy sources or feedstocks based on renewable energies).
Shifts in industrial production in the sense of Renewables Pull can in principle be caused by differences in the stringency of climate policies in different countries, as in the case of Carbon Leakage. Unlike Carbon Leakage, however, Renewables Pull can also occur if similarly ambitious climate policies are implemented in different countries. This is because Renewables Pull is primarily determined by differences in the costs and availability of renewable energies. In addition, Renewables Pull can also be triggered by cost reductions of renewable energies and by changing preferences on the demand side towards climate-friendly products. Another important difference to Carbon Leakage is that the Renewables Pull effect does not necessarily counteract climate policy.
Similar to Carbon Leakage, it is to be expected that Renewables Pull could become relevant primarily for very energy-intensive products in basic materials industries. In these sectors (e.g. in the steel or chemical industry), there is also the possibility that relocations of specific energy-intensive parts of the production process could trigger domino effects. As a result, large parts of the value chains previously existing in a country or region could also be subjected to an (indirect) Renewables Pull effect.
For the federal state of NRW, in which the basic materials industry plays an important role, the possible emergence of Renewables Pull is associated with significant challenges as climate policy in Germany, the EU and also worldwide is expected to become more ambitious in the future.
This report aims to enable and initiate a deeper analysis of the potential future developments and challenges associated with the Renewables Pull effect. Thus, in the final chapter of the report, several research questions are formulated that can be answered in the further course of the SCI4climate.NRW project as well as in other research projects.
The EU aims to become the first climate neutral continent. To achieve this goal, the industry sector needs to reduce its GHG emissions to net zero or at least close to net zero. This is a particularly challenging task due to the high energy demand especially of primary materials production and the little potential to reduce this energy intensity when switching to other production processes based on electricity or hydrogen. In order to identify robust strategies for achieving a net-zero-compatible industry sector, the paper at hand analyses the transformation of the industry sector as described by a number of recent climate neutrality scenarios for Germany. Apart from overall industry, a focus is set on the sectors of steel, chemicals and cement. The analysed scenarios show very deep GHG emission reductions in industry and they appear to be techno-economically feasible by the mid of the century, without relying on offsets or on shifts from domestic production to imports. The scenarios agree on a suite of core strategies to achieve this, such as direct and indirect electrification, energy efficiency and recycling as well as new technological routes in steel making and cement. The scenarios differ, however, regarding the future mix of electricity, hydrogen and biomass and regarding the future relevance of domestic production of basic chemicals.
Das Ziel der Klimaneutralität bis zum Jahr 2045 stellt nicht zuletzt den Industriesektor vor erhebliche Herausforderungen. Für diesen Sektor werden teilweise sehr unterschiedliche Entwicklungspfade in Richtung Klimaneutralität beschrieben, wie ein Blick in verschiedene aktuelle Szenariostudien zeigt. Dennoch gibt es auch im Industriesektor bestimmte Emissionsminderungsstrategien, die in allen vorliegenden Szenarien als unverzichtbar angesehen werden.
Bewegende Energie - das charakterisiert den beruflichen und akademischen Lebensweg von Peter Hennicke. Seine bis heute andauernde Arbeit zur Energiewende hat vieles in Bewegung gebracht. Er hat den Begriff "Energiewende" zwar nicht erfunden, aber maßgeblich mitgeprägt. Weil ihn dieses Ziel so erfüllt und sein Engagement so voller positiver Energie ist, begeistert und bewegt er die Menschen, die mit ihm zusammenwirken, und häufig auch diejenigen, die seinen Ideen zunächst skeptisch oder kritisch gegenüberstehen.
Die Autorinnen und Autoren dieses Buches stellen wesentliche Ideen und wissenschaftliche Konzepte von Peter Hennicke entlang ihrer beruflichen und wissenschaftlichen Aktivitäten vor. Damit gelingt es ihnen, sowohl 40 Jahre Energiewende und Transformation zur Nachhaltigkeit nachzuzeichnen als auch Impulse und eine Agenda für die zweite Phase der Energiewende zu setzen.
Deutschland soll bis 2045 klimaneutral werden. So steht es im verschärften Klimaschutzgesetz, das im Juni 2021 vom Bundestag verabschiedet wurde. Die deutsche Industrie verursacht derzeit knapp ein Viertel der Treibhausgasemissionen, etwa ein Drittel davon entfällt auf die Eisen- und Stahlproduktion. Um das Klimaziel zu erreichen, müssen somit große CO2-Einsparungen in der Stahlindustrie realisiert werden.
Der Diskurs um die Transformation des Energiesystems ist in den vergangenen Jahren vermehrt über wissenschaftlich fundierte Szenarien geführt worden, die aus verschiedenen gesellschaftlichen Perspektiven in Auftrag gegeben wurden. Der Vergleich von vier im Jahr 2021 erschienenen Studien zeigt auf, wo weitgehende Einigkeit über die erforderlichen Strategien zur Erreichung der Klimaneutralität bis 2045 besteht, und wo die größten Differenzen liegen.
Treibhausgasneutralität in Deutschland bis 2045 : ein Szenario aus dem Projekt SCI4climate.NRW
(2023)
Die klimapolitischen Ziele Deutschlands und der EU machen eine sehr schnelle und tiefgreifende Transformation sowohl der Energieversorgung als auch der energieverbrauchenden Sektoren notwendig. Diese Transformationsherausforderung betrifft nicht zuletzt die energieintensive Industrie in Deutschland, die vor grundlegenden technologischen Veränderungen wichtiger Produktionsprozesse steht. Die Herausforderungen für die Industrie werden durch die aktuelle Energiekrise weiter verschärft.
Vor diesem Hintergrund stellt das hier vorgestellte Klimaschutzszenario "SCI4climate.NRW-Klimaneutralität" (S4C-KN), das im Rahmen des vom Land NRW finanzierten Forschungsprojekts "SCI4climate.NRW" entwickelt wurde, die möglichen künftigen Entwicklungen in der energieintensiven Industrie in den Mittelpunkt der Analyse. Das Szenario analysiert diese Entwicklungen im Kontext eines gesamtwirtschaftlichen Transformationspfads hin zu einem klimaneutralen Deutschland im Jahr 2045.
To combat climate change, it is anticipated that in the coming years countries around the world will adopt more stringent policies to reduce greenhouse gas emissions and increase the use of clean energy sources. These policies will also affect the industry sector, which means that industrial production is likely to progressively shift from CO2-emitting fossil fuel sources to renewable energy sources. As a result, a region's renewable energy resources could become an increasingly important factor in determining where energy-intensive industries locate their production. We refer to this pull factor as the "renewables pull" effect. Renewables pull could lead to the relocation of some industrial production as a consequence of regional differences in the marginal cost of renewable energy sources. In this paper, we introduce the concept of renewables pull and explain why its importance is likely to increase in the future. Using the examples of direct reduced iron (DRI) and ammonia production, we find that the future costs of climate-neutral production of certain products is likely to vary considerably between regions with different renewable energy resources. However, we also identify the fact that many other factors in addition to energy costs determine the decisions that companies make in term of location, leaving room for further research to better understand the future relevance of renewables pull.