Refine
Year of Publication
Document Type
- Report (11)
- Peer-Reviewed Article (10)
- Conference Object (10)
- Working Paper (7)
- Book (1)
- Part of a Book (1)
- Contribution to Periodical (1)
Improvements in energy efficiency have numerous impacts additional to energy and greenhouse gas savings. This paper presents key findings and policy recommendations of the COMBI project ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe").
This project aimed at quantifying the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. It covered the most relevant technical energy efficiency improvement actions in buildings, transport and industry.
Quantified impacts include reduced air pollution (and its effects on human health, eco-systems), improved social welfare (health, productivity), saved biotic and abiotic resources, effects on the energy system and energy security, and the economy (employment, GDP, public budgets and energy/EU-ETS prices). The paper shows that a more ambitious energy efficiency policy in Europe would lead to substantial impacts: overall, in 2030 alone, monetized multiple impacts (MI) would amount to 61 bn Euros per year in 2030, i.e. corresponding to approx. 50% of energy cost savings (131 bn Euros).
Consequently, the conservative CBA approach of COMBI yields that including MI quantifications to energy efficiency impact assessments would increase the benefit side by at least 50-70%. As this analysis excludes numerous impacts that could either not be quantified or monetized or where any double-counting potential exists, actual benefits may be much larger.
Based on these findings, the paper formulates several recommendations for EU policy making:
(1) the inclusion of MI into the assessment of policy instruments and scenarios,
(2) the need of reliable MI quantifications for policy design and target setting,
(3) the use of MI for encouraging inter-departmental and cross-sectoral cooperation in policy making to pursue common goals, and
(4) the importance of MI evaluations for their communication and promotion to decision-makers, stakeholders, investors and the general public.
In 2016, the European Commission presented the Clean Energy for all Europeans Package , comprising legislative proposals to facilitate the clean energy transition within the EU, such as the revised EPBD 2010/31/EU and EED 2012/27/EU.Besides putting energy efficiency first and achieving global leadership in renewable energy, a third goal of the package was to provide a "fair deal to consumers" with "no one left behind"., While in some Member States the issue of energy poverty already was on the political agenda, enabling affordable access to basic energy services for all households and thus reducing energy poverty is now an explicit policy target of the revised EU Directives.
In order to assess and monitor the extent of the issue across the EU and address it by suitable measures, the concept of energy poverty needs to be defined, operationalised and measured. The paper aims to investigate the role of energy poverty indicators for policy making. To do so, it provides an overview on existing measurement approaches.Furthermore, the paper presents the development and current state of energy poverty across the EU using a set of four complementary indicators used by the EU Energy Poverty Observatory. These consensual and expenditure-based indicators are calculated using data from the EU Survey on Income and Living Conditions and the Household Budget Survey.
In addition, the paper highlights peculiarities of results on the different indicators, describes persisting issues with regard to their calculation and interpretation against the background of the underlying data base.
Based on the results of this analysis, further necessities of data collection and research are pointed out.
Energy sufficiency has recently gained increasing attention as a way to limit and reduce total energy consumption of households and overall. This paper presents selected results of a research project funded by the German Federal Ministry of Education and Research that examined the potentials and barriers for energy sufficiency with a focus on electricity in households, how household members perceive sufficiency practices, and how policymakers could support and encourage these. Bottom-up calculations for an average 2-person household in Germany yielded a total electricity savings potential from energy efficiency and sufficiency combined of theoretically up to 75 %.
The continuous growth of per capita living space was identified as one important driver for additional energy consumption both for heat and electricity. The paper will present findings of a representative survey of 600 persons responsible for the housework. It revealed that a part of the households is already practicing sufficiency options or are open towards these. Up to 30 % of these households can imagine, given the right conditions and policy support, to move to a smaller dwelling or to share an apartment with others when they are older.
Results of a first comprehensive analysis of an energy sufficiency policy to encourage and support households to sufficiency practices form the second part of the paper, with a focus on the feasibility and potential effectiveness of instruments for limiting the growth in average living space per person. This includes a case study on fostering communal housing projects as a measure to reduce living space. Further, the feasibility of a cap scheme for the total electricity sales of a supplier to its customers was examined. Instruments supporting energy-efficient and sufficient purchase and use of equipment complete the integrated energy sufficiency and efficiency policy package.
The paper will finally present the project's conclusions on an integrated energy sufficiency policy package resulting from this analysis.
Dieses Wuppertal Paper dient dazu, a) die mögliche Klimaschutzwirkung eines CO2-Preises zu analysieren, allein und im Gesamtpaket von Instrumenten zum Klimaschutz, b) die Möglichkeiten der Mittelverwendung zu analysieren und zu bewerten, c) dadurch den Dschungel der Argumente und Motivationen in den bestehenden Vorschlägen zu lichten und d) aus der Analyse ein Modell zu skizzieren, das den Anforderungen von Klimaschutz und sozialer Gerechtigkeit sowie Erhalt der Wettbewerbsfähigkeit am besten gerecht wird und damit der Bundesregierung als Anregung bei der Entscheidung über Einführung und Ausgestaltung eines CO2-Preises dienen kann.
In dem Papier werden diese Fragen anhand von neun Thesen mit einem abschließenden Fazit ergründet. Daraus wird deutlich:
Ein CO2-Preis kann sektorale Ziele und Instrumente nicht ersetzen. Seine volle Wirkung kann er nur entfalten, wenn er komplementär zu sektorspezifischen Klimaschutzinstrumenten eingeführt wird. Nur wenn für diese Instrumente ein guter Teil der Einnahmen aus der CO2-Steuer eingesetzt wird, sind die Klimaziele erreichbar. Die Ziele werden dadurch mit weitaus geringerem CO2-Preis bei gleichzeitig höheren Kostenentlastungen für Verbraucherinnen und Verbraucher, Unternehmen und sogar die öffentlichen Haushalte erreichbar, als wenn die Politik allein auf einen CO2-Preis setzen würde.
Any energy efficiency impact evaluation can be done from different analytical perspectives, e.g. the investor/end-user perspective, program administrator perspective or the societal perspective. COMBI applies the "societal perspective", as this is most relevant for policy-making. COMBI draws on a reference scenario until the year 2030 including existing (partially already ambitious) policies. By modelling 21 sets of "energy efficiency improvement" (EEI) actions, a second efficiency scenario was modelled amounting to additional energy savings of around 8% p.a. in 2030, that is comparable to the EUCO+33 to EUCO+35 scenario. This D2.7 quantification report summarises the quantification approaches applied in the COMBI project and main project findings. It therefore draws on other COMBI reports that contain this information in greater detail in order to summarise quantifications.
The report is structured in three main sections: 1. The COMBI approach and methods, explaining key methodological approaches both for individual impact quantifications and for the aggregation of impacts 2. Quantification results, giving an overview on main figures of quantified indicators and 3. Insights from cross-impact analysis, which gives a comparison between monetised impacts and presents their use for Cost-Benefit calculations in the COMBI online tool.
The COMBI project aimed at quantifying the multiple non-energy benefits of energy efficiency in the EU-28 area and incorporate those multiple impacts into decision-support frameworks for policy-making. Therefore, all multiple impacts of energy efficiency are analysed from an overall societal view in the project. The COMBI policy recommendations resulting from the evaluation outcomes are presented in this report.
COMBI draws on a reference scenario until the year 2030 including existing policies. By modelling 21 sets of "energy efficiency improvement" (EEI) actions, a second efficiency scenario was modelled amounting to additional energy savings of around 8% p.a. in 2030, and that is comparable to the EUCO+33 to EUCO+35 scenario. All figures quantified by COMBI relate to additional values, i.e. additional impacts resulting from additional EEI actions beyond the reference scenario as a consequence of additional policies. The project quantified in total 31 individual impact indicators with appropriate state-of-the-art models.
The European electricity market is linked to a carbon market with a fixed cap that limits greenhouse gas emissions. At the same time, a number of energy efficiency policy instruments in the EU aim at reducing the electricity consumption. This article explores the interactions between the EU's carbon market on the one hand and instruments specifically targeted towards energy end-use efficiency on the other hand. Our theoretical analysis shows how electricity demand reduction triggered by energy efficiency policy instruments affects the emission trading scheme. Without adjustments of the fixed cap, decreasing electricity demand (relative to business-as-usual) reduces the carbon price without reducing total emissions. With lower carbon prices, costly low emission processes will be substituted by cheaper high emitting processes. Possible electricity and carbon price effects of electricity demand reduction scenarios under various carbon caps are quantified with a long-term electricity market simulation model. The results show that electricity efficiency policies allow for a significant reduction of the carbon cap. Compared to the 2005 emission level, 30% emission reductions can be achieved by 2020 within the emission trading scheme with similar or even lower costs for the industrial sector than were expected when the cap was initially set for a 21% emission reduction.
The implementation of energy efficiency improvement actions not only yields energy and greenhouse gas emission savings, but also leads to other multiple impacts such as air pollution reductions and subsequent health and eco-system effects, resource impacts, economic effects on labour markets, aggregate demand and energy prices or on energy security. While many of these impacts have been studied in previous research, this work quantifies them in one consistent framework based on a common underlying bottom-up funded energy efficiency scenario across the EU. These scenario data are used to quantify multiple impacts by energy efficiency improvement action and for all EU28 member states using existing approaches and partially further developing methodologies. Where possible, impacts are integrated into cost-benefit analyses. We find that with a conservative estimate, multiple impacts sum up to a size of at least 50% of energy cost savings, with substantial impacts coming from e.g., air pollution, energy poverty reduction and economic impacts.
What role do transaction costs play in energy efficiency improvements and how can they be reduced?
(2019)
Ex-ante policy evaluation requires a detailed understanding of how the subjects addressed by the policy react to its implementation. In the context of energy efficiency, policy measures typically aim at influencing investment decisions towards more efficient options.
As has been discussed widely in the context of the "energy efficiency gap", investments in energy efficiency improvements are frequently not conducted even though they seem cost-effective from a simple cost-benefit perspective, where transaction costs have been identified as one important barrier.
While transaction costs have been discussed widely from a conceptional perspective, empirical studies quantifying transaction costs and measures to reduce them are rare. This paper presents approaches, results and insights from a recently completed research project funded by the German Federal Energy Efficiency Center (BfEE), addressing transaction costs in various energy efficiency measures and the role of energy efficiency services to overcome the barrier.
We analyse a set of 11 energy efficiency investments covering private households, public institutions and the industry sector. We gather data on direct investment costs and energy cost savings and provide a detailed analysis of the various barriers and transaction costs associated with the implementation. We then analyse the costs of existing energy efficiency services using data provided by the BfEE. We compare the different cost elements and analyze the potential of energy efficiency services to reduce transaction costs.
We find that the role of transaction costs differs substantially between households, public institutions and companies and that the impact of energy efficiency services on transaction costs needs to be evaluated using different methodological approaches. We conclude that while data availability on disaggregated transaction costs is a major challenge, energy services can reduce transaction costs considerably.
Energy sufficiency policy : an evolution of energy efficiency policy or radically new approaches?
(2015)
In the last four decades, energy efficiency increased significantly in OECD countries. However, only during the most recent years, total energy consumption started to decrease a little, and much more slowly than energy efficiency potentials would suggest. Energy sufficiency has therefore gained new attention as a way to limit and reduce total energy consumption of a household or a country overall.
The project "Energiesuffizienz" funded by the German ministry for research has examined what energy sufficiency actually is, and what householders, household members but also manufacturers and local authorities could do to make electricity use in the home more sufficient. The focus of this paper is the policy part of the project - the first comprehensive analysis of an energy sufficiency policy.
The objective is to find out how policy can support market actors in using the energy sufficiency options identified. As for energy efficiency policy, it starts with the gathering of potential sufficiency actions and the analysis of the relevant barriers all market actors face, to derive recommendations for which policy instruments need to be combined to an effective policy package, and which other pre-conditions have to be met. Energy efficiency and energy sufficiency should not be seen as opposed to each other but work in the same direction - saving energy. Therefore, some instruments of the energy sufficiency policy package may be the same as for energy efficiency - such as energy taxation, and linear or progressive energy prices. Some may simply adapt technology-specific energy efficiency policy instruments. Examples are progressive appliance efficiency standards, standards based on absolute consumption, or providing energy advice. However, sufficiency may also require radical new approaches particularly to mitigate the drivers of non-sufficiency. They may range from promotion of completely different services for food and clothes cleaning, to instruments for limiting average dwelling floor area per person, or to a cap-and-trade system for the total electricity sales of a supplier to its customers, instead of an energy efficiency obligation. The paper presents these and other elements of an integrated energy sufficiency policy package resulting from this analysis.