Refine
Year of Publication
Document Type
- Conference Object (14)
- Report (8)
- Peer-Reviewed Article (4)
- Working Paper (4)
- Part of a Book (3)
- Contribution to Periodical (2)
Division
Refrigerators and freezers (subsumed under the term "cold appliances") are among the most widely used electrical appliances in the residential sector all around the world. Currently, about 1.4 billion domestic cold appliances worldwide use about 650 TWh electricity, which is 1.2 times Germany’s total electricity consumption, and cause CO2 emissions of 450 million tons of CO2eq.
Although the specific electricity consumption per volume of cold appliances has decreased during recent years due to technical progress and policy instruments like labelling and eco-design requirements, total worldwide energy consumption of these appliances is on the increase. Scenario calculations were carried out for 10 world regions by the Wuppertal Institute. Results show that about half of the energy consumption could be saved with the most energy-efficient appliances available today, and even higher savings will be possible with next generation technologies by 2030. According to the analysis, these savings are usually very cost-effective.
All these aspects are part of the new website "bigEE.net - Your guide to energy efficiency in buildings" which aims to provide information about technical options but also about policies to support the development of energy-efficient appliances.
To initiate and foster market transformation of energy-efficient appliances it is highly advisable for policymakers to generate appliances-specific policy packages. Since each regional market has its specificity (e.g. energy prices, typical appliance affecting the cost effectiveness of efficient appliances), the barriers for the market transformation of single product groups are also specific and need to be addressed by appropriate policies and measures. Elements of measures to build appropriate specific policy packages for refrigerators will be presented in the paper, and the refrigerator package from California (USA) demonstrates the successful implementation of a sector-specific package.
Contemporary combined heat and power (CHP) systems are often based on fossil fuels, such as natural gas or heating oil. Thereby, small-scale cogeneration systems are intended to replace or complement traditional heating equipment in residential buildings. In addition to space heating or domestic hot water supply, electricity is generated for the own consumption of the building or to be sold to the electric power grid.
The adaptation of CHP-systems to renewable energy sources, such as solid biomass applications is challenging, because of feedstock composition and heat integration. Nevertheless, in particular smallscale CHP technologies based on biomass gasification and solid oxide fuel cells (SOFCs) offer significant potentials, also regarding important co-benefits, such as security of energy supply as well as emission reductions in terms of greenhouse gases or air pollutants. Besides emission or air quality regulations, the development of CHP technologies for clean on-site small-scale power generation is also strongly incentivised by energy efficiency policies for residential appliances, such as e.g. Ecodesign and Energy Labelling in the European Union (EU). Furthermore, solid residual biomass as renewable local energy source is best suited for decentralised operations such as micro-grids, also to reduce long-haul fuel transports. By this means such distributed energy resource technology can become an essential part of a forward-looking strategy for net zero energy or even smart plus energy buildings.
In this context, this paper presents preliminary impact assessment results and most recent environmental considerations from the EU Horizon 2020 project "FlexiFuel-SOFC" (Grant Agreement no. 641229), which aims at the development of a novel CHP system, consisting of a fuel flexible smallscale fixed-bed updraft gasifier technology, a compact gas cleaning concept and an SOFC for electricity generation. Besides sole system efficiencies, in particular resource and emission aspects of solid fuel combustion and net electricity effects need to be considered. The latter means that vastly less emission intensive gasifier-fuel cell CHP technologies cause significant less fuel related emissions than traditional heating systems, an effect which is further strengthened by avoided emissions from more emission intensive traditional grid electricity generation. As promising result, operation "net" emissions of such on-site generation installations may be virtually zero or even negative. Additionally, this paper scopes central regulatory instruments for small-scale CHP systems in the EU to discuss ways to improve the framework for system deployment.
What role do transaction costs play in energy efficiency improvements and how can they be reduced?
(2019)
Ex-ante policy evaluation requires a detailed understanding of how the subjects addressed by the policy react to its implementation. In the context of energy efficiency, policy measures typically aim at influencing investment decisions towards more efficient options.
As has been discussed widely in the context of the "energy efficiency gap", investments in energy efficiency improvements are frequently not conducted even though they seem cost-effective from a simple cost-benefit perspective, where transaction costs have been identified as one important barrier.
While transaction costs have been discussed widely from a conceptional perspective, empirical studies quantifying transaction costs and measures to reduce them are rare. This paper presents approaches, results and insights from a recently completed research project funded by the German Federal Energy Efficiency Center (BfEE), addressing transaction costs in various energy efficiency measures and the role of energy efficiency services to overcome the barrier.
We analyse a set of 11 energy efficiency investments covering private households, public institutions and the industry sector. We gather data on direct investment costs and energy cost savings and provide a detailed analysis of the various barriers and transaction costs associated with the implementation. We then analyse the costs of existing energy efficiency services using data provided by the BfEE. We compare the different cost elements and analyze the potential of energy efficiency services to reduce transaction costs.
We find that the role of transaction costs differs substantially between households, public institutions and companies and that the impact of energy efficiency services on transaction costs needs to be evaluated using different methodological approaches. We conclude that while data availability on disaggregated transaction costs is a major challenge, energy services can reduce transaction costs considerably.
Brasiliens Nachfrage nach Strom ist in den vergangenen Jahren stark gewachsen. Auch für die kommenden Jahre ist mit einer weiteren Steigerung von jährlich etwa 3,5 Prozent der Nachfrage zu rechnen. Dies stellt das Land vor eine große Herausforderung. Zusätzlich steht die auf Wasserkraft basierende Stromerzeugung des Landes aufgrund geringer Niederschläge und Wasserstandsmengen vor einem Engpass. Deshalb kommen fossilthermische Reservekraftwerke insbesondere seit dem vergangenen Jahr verstärkt zum Einsatz und verteuern die Stromerzeugung erheblich.
Auch der Ausbau nicht-konventioneller Erneuerbarer Energien zur Diversifizierung der Strommatrix läuft in Brasilien nur sehr langsam an. Eine Planung zur systematischen Integration verschiedener Erneuerbarer Energieträger findet bislang aber nicht statt.
Ziel der Studie ist es deshalb, das zusätzliche THG-Einsparpotenzial durch die systematische Integration von Erneuerbaren Energien, gegenüber dem Business as Usual Szenario (Ausbau der Erneuerbaren ohne systematische Integration) zu ermitteln und in einer Broschüre für ein breites Publikum aufzuarbeiten.
Strategic policy packages to deliver energy efficiency in buildings : their international evidence
(2013)
The project "bigEE - Bridging the Information Gap on Energy Efficiency in Buildings" presents comprehensive information for energy efficiency in buildings and the related policy on the international internet-based knowledge platform bigee.net.
To develop the evidence-based information required for bigee.net, we addressed in a different and more systematic way than usual the question of how policy can support improved building energy efficiency most effectively: We combined (1) a theoretical, actor-centred analysis of market-inherent barriers and incentives for all actors in the supply and use chain of (energy-efficient) buildings to derive a recommended package combining the types of policies and measures the actors need to overcome all these barriers, with (2) empirical evidence on model examples of good practice policy packages to check if advanced countries have indeed used the combination of policies we derived from the actor-centred analysis.
In this way, we found that the recommendable policy package for new buildings is similar to the well-known one for appliances, but with the objective to mainstream nearly zero energy buildings. By contrast, the task for existing buildings is two-dimensional - increasing the depth of renovation first, to savings of 50 to 80%, and then the rate of energy-efficient renovation to 2% or more p.a. - and so the policy package needs more emphasis on individual advice, incentives, and financing. The paper presents the recommended packages as well as a comparison of existing national policy packages from California (USA), China, Denmark, Germany, and Tunisia and what we learned from it for effective packages and implementation.
What makes a good policy? : Guidance for assessing and implementing energy efficiency policies
(2013)
Which factors are crucial to successfully design and implement a "good practice" policy to increase the energy efficiency of buildings and appliances? This is one of the main challenges for the new web platform bigee.net that provides guidance on good practice policies.
In this paper we examine the question what "good practice" is by presenting a multi-criteria assessment scheme to analyse different policies worldwide.
The assessment scheme contains a set of criteria addressing key factors leading to the success of a policy as well as its outcomes: a good policy addresses all market players and barriers, avoids lost opportunities and lock-in effects, has ambitious and regularly updated energy efficiency levels, and spill-over effects. Other criteria are high energy savings and the calculated cost-effectiveness.
The assessment scheme provides a standardised data collection approach, which paves the way for both qualitative and quantitative evaluation. Furthermore, it can help policy-makers to transfer a successful policy.
The development of the scheme is based on a literature review of worldwide implemented policies and measures that promote energy-efficiency of buildings and appliances. Criteria were operationalized, including a ranking between 0 and 10. The ranking is a decisive factor whether the policy qualifies as good practice. To demonstrate the practicability of this scheme, the paper analyses a good practice example according to the assessment scheme: Energy-Efficient Refurbishment and Energy Efficient Construction programmes of the German public bank KfW.