Refine
Document Type
- Report (8)
- Peer-Reviewed Article (5)
- Conference Object (1)
- Contribution to Periodical (1)
- Working Paper (1)
Division
Die nationale Wasserstoffstrategie der Bundesregierung beinhaltet zentrale Zielkonflikte: Stärkung der deutschen Wirtschaft versus hohe Importquote, günstigere Produktionskosten im Ausland versus höhere Wertschöpfung durch Produktion im Inland. Vor diesem Hintergrund wird in diesem Beitrag diskutiert, wie groß die Kostenunterschiede ausfallen, welche Bedeutung die Transportkosten haben und welche Reboundeffekte bei Importen aus Nordafrika zu beachten sind.
Die Stadt Mannheim kann spätestens bis zum Jahr 2050 vollständig klimaneutral werden und damit einen maßgeblichen Beitrag zur Umsetzung der Ziele des Pariser Klimaabkommens auf kommunaler Ebene leisten. Das ist das zentrale Ergebnis der vorliegenden "Energierahmenstudie Mannheim", die das Energieunternehmen MVV in Abstimmung mit der Stadt beim Wuppertal Institut in Auftrag gegeben hat. Die Studie untersucht und beschreibt die Handlungsmöglichkeiten und Umsetzungsvoraussetzungen in den Bereichen Strom, Wärme, Verkehr und Industrie.
Deutschlands Klimaschutzstrategie baut auf den Einsatz von grünem Wasserstoff aus erneuerbaren Energien. Doch wo soll der Wasserstoff herkommen, aus heimischer Produktion oder importiert aus dem Ausland? Eine Studie des Wuppertal Instituts und DIW Econ schafft einen Überblick über die aktuelle Datenlage und ermittelt Wertschöpfungs- und Beschäftigungseffekte beider Strategien. Das Resümee: Es trifft nicht zu, dass importierter Wasserstoff allgemein günstiger ist, entscheidend sind je nach Herkunftsland die tatsächlich realisierbaren Strom- und Transportkosten. Wird der grüne Wasserstoff stattdessen im eigenen Land produziert, wird dies zudem eine positive Beschäftigungswirkung und Wertschöpfung entfalten. Mit der Erreichung der Klimaziele 2050 betrüge die zusätzliche Wertschöpfung bei einer stark auf die heimische Erzeugung ausgerichtete Strategie bis zu 30 Milliarden Euro im Jahr 2050 und es könnten bis zu 800.000 Arbeitsplätze geschaffen werden.
The reduction of greenhouse gas (GHG) emissions by energyintensive industries to a net zero level is a very ambitious and complex but still feasible challenge, as recent studies show for the EU level. "Industrial Transformation 2050" by Material Economics (2019) is of particular relevance, as it shows how GHG-neutrality can be achieved in Europe for the sectors chemicals (plastics and ammonia), steel and cement, based on three main decarbonisation strategies. The study determines the resulting total demands for renewable electricity, hydrogen and for the capture and storage of CO2 (CCS). However, it analyses neither the regional demand patterns that are essential for the required infrastructure nor the needed infrastructure itself.
Against this background the present paper determines the regional distribution of the resulting additional demands for electricity, hydrogen and CCS in Europe in the case that the two most energy and CCS intensive decarbonisation strategies of the study above will be realised for the existing industry structure. It explores the future infrastructure needs and identifies and qualitatively assesses different infrastructure solutions for the largest industrial cluster in Europe, i.e. the triangle between Antwerp, Rotterdam and Rhine-Ruhr. In addition, the two industrial regions of Southern France and Poland are also roughly examined.
The paper shows that the increase in demand resulting from a green transformation of industry will require substantial adaptation and expansion of existing infrastructures. These have not yet been the subject of infrastructure planning. In particular, the strong regional concentration of additional industrial demand in clusters (hot spots) must be taken into account. Due to their distance from the high-yield but remote renewable power generation potentials (sweet spots), these clusters further increase the infrastructural challenges. This is also true for the more dispersed cement production sites in relation to the remote CO2 storage facilities. The existing infrastructure plans should therefore be immediately expanded to include decarbonisation strategies of the industrial sector.
Als Direct Air Capture (DAC) werden Technologien zur Abscheidung von Kohlendioxid aus der Atmosphäre bezeichnet. Diese könnten zunehmend zum Einsatz kommen, um CO2 für Power-to-X-Prozesse (PtX) oder zur Erzielung "negativer Emissionen" bereitzustellen. Die Ergebnisse einer multidimensionalen Bewertung im Rahmen der BMWi-Studie "Technologien für die Energiewende" (et 09/2018) zeigen, dass noch große Unsicherheiten bestehen und die Entwicklung überwiegend an Deutschland vorbeigeht.
A significant reduction in greenhouse gas emissions will be necessary in the coming decades to enable the global community to avoid the most dangerous consequences of man-made global warming. This fact is reflected in Germany's 7th Federal Energy Research Program (EFP), which was adopted in 2018. Direct Air Capture (DAC) technologies used to absorb carbon dioxide (CO2) from the atmosphere comprise one way to achieve these reductions in greenhouse gases. DAC has been identified as a technology (group) for which there are still major technology gaps. The intention of this article is to explore the potential role of DAC for the EFP by using a multi-dimensional analysis showing the technology's possible contributions to the German government's energy and climate policy goals and to German industry's global reputation in the field of modern energy technologies, as well as the possibilities of integrating DAC into the existing energy system. The results show that the future role of DAC is affected by a variety of uncertainty factors. The technology is still in an early stage of development and has yet to prove its large-scale technical feasibility, as well as its economic viability. The results of the multi-dimensional evaluation, as well as the need for further technological development, integrated assessment, and systems-level analyses, justify the inclusion of DAC technology in national energy research programs like the EFP.
Seit Veröffentlichung der vom Landesverband Erneuerbare Energien NRW beauftragten und durch das Wuppertal Institut durchgeführten Studie "Bewertung der Vor- und Nachteile von Wasserstoffimporten im Vergleich zur heimischen Erzeugung" Ende 2020 haben sich die Rahmenbedingungen für den Wasserstoffhochlauf in Deutschland zum Teil deutlich geändert. Darüber hinaus ist zwischenzeitlich eine Reihe von Klimaschutz- und Transformationsstudien erschienen, mit teilweise neuen und differenzierten Einschätzungen zu Wasserstoff-Kosten und -Entwicklungspfaden. Dazu gehören insbesondere die als "Big Five" der Klimaneutralitätsszenarien bezeichneten Publikationen sowie weitere, spezifische H2-Analysen. Vor diesem Hintergrund sind die Ziele der vorliegenden Studie:
1. Eine Aktualisierung der Metaanalyse der oben genannten Wasserstoff-Studie aus dem Jahr 2020 - bezogen auf Kosten- und Mengen-Bandbreiten für die zukünftige Produktion und Bereitstellung von grünem und, soweit möglich, blauem Wasserstoff für Deutschland.
2. Eine kritische Einordnung der absehbaren Wasserstoff-Nachfrage in Deutschland, welche von der Wahl der Nutzungssektoren abhängt.
3. Eine kritische Diskussion und Einordnung der künftigen Rolle von blauem Wasserstoff, also der Frage, ob und inwiefern er eine sinnvolle Übergangslösung zu grünem Wasserstoff darstellen könnte.
The production of green hydrogen in Germany is more competitive than expected compared to imports. This is the key finding of a meta-analysis conducted by the Wuppertal Institute on behalf of the North Rhine-Westphalia Association for Renewable Energies (Landesverband Erneuerbare Energien NRW).
The hydrogen study focuses primarily on the year 2030 and beyond - and confirms the advantages of green hydrogen produced in Germany from domestic renewable energies, especially when the evaluation is viewed from a holistic system perspective.