Im Rahmen der Energiewende haben sich erneuerbare Energien zur Stromerzeugung in Deutschland bereits etabliert. Um jedoch das volle Potenzial der Reduktion von fossilen Energien und Treibhausgasen (THG) auszuschöpfen, muss aus der Energiewende auch eine Wärmewende werden. Der Energieeinsatz für die Wärmebereitstellung der Industrie betrug im Jahr 2012 etwa 535 TWh (22 % des Endenergiebedarfs Deutschlands), hauptsächlich bereitgestellt durch Erdgas (48 %) und Steinkohle (17 %) 1. Damit wurden für die Wärmebereitstellung im Industriesektor rund 159 Mio. t CO2-äq emittiert, was 17 % der THG-Emissionen Deutschlands entspricht.
Aufgrund der Vielseitigkeit der einzelnen Branchen und Wärmeanwendungen im Industriesektor kann dieser Beitrag nur beispielhaft einzelne Komponenten für eine Wärmewende aufzeigen, die auch wiederum die Aktivitäten der einzelnen Autoren widerspiegeln. Ausgehend von einer nationalen Betrachtung und expliziten Modellierungsergebnissen für die energieintensive Industrie in NRW, werden einzelne Potenziale und Aktivitäten im Bereich der Wärmebereitstellung, -speicherung und -integration behandelt.
Im Rahmen einer aktuellen Studie zur Transformation des Europäischen Energiesystems zur Klimaneutralität unter Berücksichtigung der Gaskrise entwickelte das Wuppertal Institut ein Szenario (EU27+UK) für die Transformation der europäischen Industrie inklusive Raffinerien und Kokereien, in dem die industriellen Treibhausgasemissionen bis zum Jahr 2050 um 99 % gegenüber 2018 gemindert werden. Der Endenergiebedarf der Industrie sinkt in diesem Szenario durch den Einsatz von Wärmepumpen, andere Energieeffizienzmaßnahmen sowie einen Rückgang der Produktion in Raffinerien bis 2040 deutlich und der Bedarf an fossilen Gasen kann zeitnah gemindert und bis 2045 auf nahezu Null gesenkt werden.
Im Rahmen dieses Szenarios erfolgte auch eine detaillierte Abbildung der Entwicklung der Prozesswärmebereitstellung in Deutschland. Die Bereit- stellung von Niedertemperaturwärme (< 150 °C) erfolgt im Szenario größtenteils über Wärmepumpen und Fernwärme. Solar- und Geothermie spielen eine (kleinere) Rolle. Für die Dampfbereitstellung (150 - 500 °C) werden vielfach hybride Strom/H2-Kessel eingesetzt, daneben Biomasse. In der Chemieindustrie spielen auch langfristig Reststoffe aus Steamcrackern eine wichtige Rolle.
Die Bereitstellung von Hochtemperaturwärme erfolgt prozessspezifisch je nach den technischen Gegebenheiten der Prozesse (z. B. H2 in den Direktreduktions- anlagen und Biomasse in den Walzwerken der Stahlindustrie, abfallbasierte Brennstoffe vor allem in den Klinkeröfen der Zementindustrie, Biomethan und Strom in der Glasindustrie, Strom für Primär- und Sekundäraluminium). Biogene Energieträger in Kombination mit CCS (BECCS) ermöglichen in der Stahlindustrie und in der mineralischen Industrie die Bereitstellung von Hochtemperaturwärme und gleichzeitig negative Emissionen zur Kompensation von Restemissionen.