Refine
Year of Publication
Document Type
- Contribution to Periodical (9)
- Peer-Reviewed Article (7)
- Report (1)
- Working Paper (1)
Division
Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for making progress on transition efforts. Yet, there is no broadly applicable evaluative scheme available to capture this critical information across a large number of cases, and to guide the design of transition experiments. To address this gap, the article develops such a scheme, in a tentative form, drawing on evaluative research and sustainability transitions scholarship, alongside insights from empirical cases. We critically discuss the scheme's key features of being generic, comprehensive, operational, and formative. Furthermore, we invite scholars and practitioners to apply, reflect and further develop the proposed tentative scheme - making evaluation and experiments objects of learning.
In the past few decades, geochemically scarce metals have
become increasingly relevant for emerging technologies in
domains such as energy supply and storage, information and
communication, lighting or transportation, which are regarded as
cornerstones in the transition towards a sustainable post-fossil
society. Accordingly, the supply risks of scarce metals and possible
interventions towards their more sustainable use have been
subject to an intense debate in recent studies. In this article, we
integrate proposed intervention options into a generic life cycle
framework, taking into account issues related to knowledge
provision and to the institutional setting. As a result, we obtain
a landscape of intervention fields that will have to be further
specified to more specific intervention profiles for scarce metals
or metals families. The envisioned profiles are expected to have
the potential to reduce action contingency and to contribute to
meeting the sustainability claims often associated with emerging
technol ogies.
Jointly experimenting for transformation? : Shaping real-world laboratories by comparing them
(2018)
Real-world laboratories (RwLs, German Reallabore) belong to a family of increasingly popular experimental and transdisciplinary research approaches at the science-society interface. As these approaches in general, and RwLs in particular, often lack clear definitions of key characteristics and their operationalization, we make two contributions in this article. First, we identify five core characteristics of RwLs: contribution to transformation, experimental methods, transdisciplinary research mode, scalability and transferability of results, as well as scientific and societal learning and reflexivity. Second, we compare RwLs to similar research approaches according to the five characteristics. In this way, we provide an orientation on experimental and transdisciplinary research for societal transformations, and reveal the contributions of this type of research in supporting societal change. Our findings enable learning across the different approaches and highlight their complementarities, with a particular focus on RwLs.
Labs in the real world : advancing transdisciplinary research and sustainability transformation
(2018)
There is a strong trend towards research in society-based laboratories,
especially in relation to sustainability. Semantic analysis reveals related discourses and emerging lines of inquiry, namely transformative potential, transdisciplinarity and learning. Real-world laboratories are a dynamic example of this research. Contributions of how to deepen and broaden their analysis are presented.