Mit dem European Green Deal hat Europa seine Klimaschutzziele nach oben korrigiert und einen weiteren, erforderlichen Schritt auf dem Weg zur Dekarbonisierung unternommen. Die neuen europäischen Zielvorgaben sind in Deutschland mit der Verabschiedung des Klimaschutzgesetzes seit Ende 2019 schon verbindlich festgeschrieben, wobei hier bereits spezifische CO2-Budgets für die Einzelsektoren definiert werden. Die Umsetzung dieser Ziele verlangt eine radikale Transformation des heutigen Energieversorgungssystems.
Der Umbau des komplexen und heterogenen Wärmebereiches stellt dabei eine der größten Herausforderung dar: Wärme ist in Europa für über 50 % des Endenergieverbrauches verantwortlich, wird aber gegenwärtig nur zu 22 % aus erneuerbaren Quellen bereitgestellt. Aus geoklimatischen, kulturellen und politischen Gründen sind dabei die Anteile in den einzelnen europäischen Ländern sehr unterschiedlich. Unter den Spitzenreitern sind Schweden (66 %) und Dänemark (48 %). Unser Nachbarland Österreich erreicht immerhin 34 %. Im Vergleich dazu liegt Deutschland mit 15 % abgeschlagen auf einem hinteren Platz.
Der verstärkte Einsatz erneuerbarer Energien ist neben der Steigerung der Energieeffizienz die tragende Säule der Wärmewende, wobei hier ein breiter Mix an Technologien gefragt ist.
Die direkte Nutzung der Wärmetechnologien hat weiterhin Priorität, erfordert aber eine stark beschleunigte Erschließung der vorhandenen Potenziale sowie einen nachhaltigen Umgang mit wertvoller Biomasse.
Die Sektorenkopplung bietet die notwendige Ergänzung für die geplante Transformation (BMWi, 2021). Solarenergie in Form von Solarwärme und Solarstrom wird somit in Kombination mit Umweltwärme eine zentrale Rolle im zukünftigen Wärme- und Kälteversorgungssystem spielen. Darauf fokussiert sich der Beitrag, wobei die spezifische Situation der Niedertemperatur-Solarthermie und der Schlüsseltechnologie Wärmepumpe adressiert werden.
Die Energiewende in Deutschland ist ein seit Jahren viel diskutiertes Thema. Neben dem Wandel der Energieerzeugungssysteme hin zu regenerativen Energiequellen muss auch eine Steigerung der Energieeffizienz stattfinden. Nur durch Adaption beider Seiten der Erzeugung als auch des Verbrauchs, lassen sich die Herausforderungen meistern.
Die Transformation des Energieversorgungssystems zu einer dekarbonisierten Energiebereitstellung bedingt ein koordiniertes Zusammenspiel der Sektoren Strom, Wärme und Verkehr. Dabei ist die Kopplung des Stromsektors mit dem Wärmesektor eine der entscheidenden Maßnahmen bei der Transformation. Die Aufnahme von Wind- und Sonnenenergie in das Netz kann durch genaue Einspeiseprognosen optimiert werden, die Kopplung zum Wärmesektor mittels Wärmepumpen und Power-to-Heat (Heizstab) ermöglicht die weitere Flexibilisierung der Nachfrageseite. Diese Interaktion wird durch intelligente Lösungen der Systemtechnik für das Energie- und Netzmanagement ermöglicht. Die Entwicklung von entsprechenden Anreizsystemen, Marktmechanismen und Geschäftsmodellen ist ebenfalls erforderlich, um diese Kopplung auch wirtschaftlich erfolgreich zu gestalten. Der Beitrag stellt das im Forschungsvorhaben "Interaktion EE-Strom, Wärme und Verkehr" erstellte 80-Prozent-Szenario für das Jahr 2050 vor und zeigt anhand von Beispielen zukünftige Anforderungen und Entwicklungen zu dieser Thematik auf.
Wärmewende im Quartier
(2016)
Der Wärmesektor hat einen Anteil von rund 55 Prozent am deutschen Primärenergieverbrauch, wobei der Anteil klimafreundlicher Wärmeerzeugung (erneuerbare Energien und Abwärmenutzung) bislang aber noch sehr gering ist und unter 20 Prozent liegt. Entsprechend sind die Potenziale zur Erschließung von Dekarbonisierungserfolgen im Wärmesektor besonders groß. Ein Gelingen der Wärmewende ist daher zwingende Voraussetzung dafür, dass die nationalen Klimaschutzziele erreicht werden.
Gerade Städte spielen auf Grund des hohen Energie- und Ressourcenverbrauchs, der hohen örtlichen Dichte von Infrastrukturen und durch die Vielzahl von Akteuren eine zentrale Rolle bei der Energiewende und für den Klimaschutz. So bilden beispielsweise gewachsene Strukturen im Bestand und hohe Nutzungsdichten potenzielle Restriktionen für die Integration von Technologien zur effizienten Nutzung erneuerbarer Energiequellen. Städtische Quartiere sind gleichzeitig der sinnvollste Umsetzungsmaßstab für integrierte innovative Systeme, da hier die größten Synergieeffekte zwischen Effizienzmaßnahmen und nachhaltiger Energieerzeugung erschlossen werden können.