One of the main objectives of impact assessments is to identify potentially significant impacts. However, determining this significance has received very limited attention as a procedural step in social impact assessments. Consequently, only limited research and documentation exists on approaches, survey tools and evaluation methods, especially with regard to participatory approaches and combined participatory-technical approaches. This study aims to address this research gap by developing and applying a joined participatory and technical impact significance evaluation. The approach is applied in a case study which analysed the livelihood impacts of the large-scale concentrated solar power plant NOORO I in Ouarzazate, Morocco.
The analysis shows that although different approaches and significance criteria must be applied when involving both local stakeholders and experts, the linked analysis offers more robust results and an improved basis for decision-making. Furthermore, it was observed in the case study that impacts affecting the social, cultural and political spheres were more often considered significant than impacts affecting the physical and material livelihood dimensions. Regarding sustainability assessments of large-scale renewable energy plants, these findings underline the importance (as for other large-scale infrastructure developments) of placing greater emphasis on the inclusion of social aspects in impact assessments.
Many countries are increasingly investing in renewable energy technologies to meet growing energy demands and increase the security of their energy supply. This development is also evident in the Middle East and North Africa (MENA) region, where renewable energy targets and policies have evolved rapidly in recent years. There is a steady increase in both the number of planned and implemented solar photovoltaic (PV) but also of solar thermal projects in form of Concentrating Solar Power (CSP) plants. Many of these installations are designed as large utility-scale systems. Despite the fact that these types of large-scale projects can have significant effects on local communities and their livelihoods, the existing research into the social impacts of such large-scale renewable energy infrastructures at local level is limited. However, assessing and managing these impacts is becoming increasingly important to reduce risks to both the affected communities and to the project and businesses activities. In order to provide more robust evidence on the local effects, this research study reviews the social impacts of large-scale renewable energy infrastructure in the MENA region based on a case study of the NOORo I CSP plant in Ouarzazate, Morocco. Data collected during two empirical field studies, in combination with expert interviews and secondary data analysis, provides detailed evidence on the type and significance of livelihood impacts of the NOORo I CSP plant. The analysis results in a consolidated list of 30 impacts and their significance levels for different stakeholder groups including farmers, young people, women, community representatives and owners of small and medium enterprises. The results show that, overall, the infrastructure development was received positively. The review also indicates that factors identified as having effects on the sustainability of local livelihoods are mainly related to information management and benefit distribution, rather than physical or material aspects.
Water availability plays an important role in the expansion planning of utility-scale solar power plants, especially in the arid regions of the Middle East and North Africa. Although these power plants usually account for only a small fraction of local water demand, competition for water resources between communities, farmers, companies, and power suppliers is already emerging and is likely to intensify in future. Despite this, to date there has been a lack of comprehensive studies analyzing interdependencies and potential conflicts between energy and water at local level. This study addresses this research gap and examines the linkages between water resources and energy technologies at local level based on a case study conducted in Ouarzazate, Morocco, where one of the largest solar power complexes in the world was recently completed. To better understand the challenges faced by the region in light of increased water demand and diminishing water supply, a mixed-method research design was applied to integrate the knowledge of local stakeholders through a series of workshops. In a first step, regional socio-economic water demand scenarios were developed and, in a second step, water saving measures to avoid critical development pathways were systematically evaluated using a participatory multi-criteria evaluation approach. The results are a set of water demand scenarios for the region and a preferential ranking of water saving measures that could be drawn upon to support decision-making relating to energy and water development in the region.
Green hydrogen and synthetic fuels are increasingly recognized as a key strategic element for the progress of the global energy transition. The Middle East and North Africa (MENA) region, with its large wind and solar potential, is well positioned to generate renewable energy at low cost for the production of green hydrogen and synthetic fuels, and is therefore considered as a potential future producer and exporter. Yet, while solar and wind energy potentials are essential, other factors are expected to play an equally important role for the development of green hydrogen and synthetic fuels (export) sectors. This includes, in particular, adequate industrial capacities and infrastructures. These preconditions vary from country to country, and while they have been often mentioned in the discussion on green hydrogen exports, they have only been examined to a limited extent. This paper employs a case study approach to assess the existing infrastructural and industrial conditions in Jordan, Morocco, and Oman for the development of a green hydrogen and downstream synthetic fuel (export) sector.
In light of Egypt's transition to a green economy, this report focuses on reducing greenhouse gas (GHG) emissions and increasing resource efficiency along three different value chains in which small and medium-sized enterprises (SMEs) play a crucial role. In order to support SMEs in Egypt to take advantage of implementing greening options along value chains, more detailed analyses are needed. Therefore, the aim of this study is to analyse three selected supply chains to identify greening opportunities for SMEs. Against this background, the project report is structured as follows: Chapter 2 introduces the background with an overview over the concept of green economy followed by Egypt's economy and its green economy. This is followed by a presentation of the value chains and an overview of the respective sectors. Chapter 3 describes the research approach, methods and data collection. The following chapters examine the three selected value chains cotton, sugar beet and refrigerators, including environmental hot spots, greening options as well as the experts' evaluation of those greening options. The report concludes with key recommendations in Chapter 7.