Refine
Year of Publication
Document Type
- Peer-Reviewed Article (19)
- Part of a Book (11)
- Report (10)
- Conference Object (3)
- Book (2)
- Contribution to Periodical (2)
- Working Paper (1)
Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienzsteigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbsumfeld behalten?
Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen.
Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden.
Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert.
Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions.
A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels?
In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
Generating social practices
(2014)
Changing consumer behaviour is key to reducing the environmental effects of industrialised societies. Social practice theories provide an integrated approach to understanding consumer behaviour. The mechanisms underlying the emergence and diffusion of social practices are however until now poorly understood. This paper presents a conceptual framework and an abstract agent-based simulation model for generating social practices which use and extend approaches from social practice theories. The main results are twofold. First, the simulation model is able to generate social practices, what confirms that the conceptual framework captures relevant elements and processes. Second, a new mechanism for behavioural lock-in is identified that provides additional insights into the widely acknowledged challenge of changing social practices and respective consumption.
Heating behavior of households is key for reducing domestic energy demand and mitigating climate change. Recently, various technical devices have been developed, providing households with feedback on their heating behavior and supporting energy conservation behavior.
The impact of such devices on overall energy consumption depends on (1) the impact of a device within a household, (2) the diffusion of devices to other households and the number of adopters, and (3) the diffusion of the induced behavioral change beyond these households. While the first two processes are currently established in assessments of sustainable household devices, we suggest that adding behavior diffusion is essential when assessing devices that explicitly target behavioral change. We therefore propose an assessment framework that includes all three processes. We implement this framework in an agent-based model by combining two existing simulation models to explore the effect of adding behavior diffusion. In three simulation experiments, we identify two mechanisms by which behavior diffusion (1) spreads the effect of such devices from adopters to non-adopters and (2) increases the average speed of behavioral change of households. From these results we conclude that behavior diffusion should be included in assessments of behavior-changing feedback devices.
Jordan's electricity system has and continues to experience considerable pressures for reform due to continuous increase of electricity demand combined with high dependency on imported fossil fuels and a partially subsidised electricity market. In this paper we use the transitions pathways to examine and analyse pressures on the regime in relation to plausible future developments of particular niches such as renewable energy technologies. Our analysis is methodologically distinct in that we explicitly identify mechanisms operating in the system and relate those to existing scenarios to assess future developments. Currently, we see future developments being sensitive to the actions of key regime actors.
Lessons for model use in transition research : a survey and comparison with other research areas
(2015)
The use of models to study the dynamics of transitions is challenging because of several aspects of transitions, notably complexity, multi-domain and multi-level interactions. These challenges are shared by other research areas that extensively make use of models. In this article we survey experiences and methodological approaches developed in the research areas of social-ecological modeling, integrated assessment, and environmental modeling, and derive lessons to be learnt for model use in transition studies. In order to account for specific challenges associated with different kinds of model applications we classify models according to their uses: for understanding transitions, for providing case-specific policy advice, and for facilitating stakeholder processes. The assessment reveals promising research directions for transition modeling, such as model-to-model analysis, pattern-oriented modeling, advanced sensitivity analysis, development of a shared conceptual framework, and use of modeling protocols.
A key factor to energy-efficiency of heating in buildings is the behavior of households, in particular how they ventilate rooms. Energy demand can be reduced by behavioral change; devices can support this by giving feedback to consumers on their behavior. One such feedback device, called the "CO2 meter", shows indoor air-quality in the colors of a traffic light to motivate so called "shock ventilation", which is energy-efficient ventilation behavior. The following effects of the "CO2 meter" are analyzed: (1) the effect of the device on ventilation behavior within households, (2) the diffusion of "CO2 meter" to other households, and (3) the diffusion of changed behavior to households that do not adopt a "CO2 meter". An agent-based model of these processes for the city of Bottrop (Germany) was developed using a variety of data sources. The model shows that the "CO2 meter" would increase adoption of energy-efficient ventilation by c. 12% and reduce heating demand by c. 1% within 15 years. Technology diffusion was found to explain at least c. 54% of the estimated energy savings; behavior diffusion explains up to 46%. These findings indicate that the "CO2 meter" is an interesting low-cost solution to increase the energy-efficiency in residential heating.
Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany's climate protection targets. Previous research suggests that, since homeowners' decision-making processes are inadequately understood as yet, today's incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners' decision-making processes regarding insulation and to explore how situational factors, such as the structural condition of houses and social interaction, influence their insulation activity. Simulation experiments allow us furthermore to study the influence of socio-spatial structures such as residential segregation and population density on the diffusion of renovation behavior among homeowners. Based on the insights gained, we derive recommendations for designing innovative policy instruments. We conclude that the success of particular policy instruments aiming at increasing homeowners' insulation activity in a specific region depends on the socio-spatial structure at hand, and that reducing financial constraints only has a relatively low potential for increasing Germany's insulation rate. Policy instruments should also target the fact that specific renovation occasions are used to undertake additional insulation activities, e.g. by incentivizing lenders and craftsmen to advise homeowners to have insulation installed.
Societal transitions involve multiple actors, changes in institutions, values and technologies, and interactions across multiple sectors and scales. Given this complexity, this paper takes on the view that the societal transitions research field would benefit from the further maturation and broader uptake of modelling approaches. This paper shows how modelling can enhance the understanding of and support stakeholders to steer societal transitions. It discusses the benefits modelling provides for studying large societal systems and elaborates on different ways models can be used for transitions studies. Two model applications are presented in some detail to illustrate the benefits. Then, limitations of modelling societal transitions are discussed, which leads to an agenda for future activities: (1) better cooperation in the development of dynamic models, (2) stronger interaction with other transition scholars and stakeholders, and (3) use of additional modelling approaches that we think are relevant to and largely unexplored in transitions studies.