Refine
Year of Publication
Document Type
- Peer-Reviewed Article (18)
- Part of a Book (11)
- Report (5)
- Book (2)
- Conference Object (2)
- Contribution to Periodical (1)
- Working Paper (1)
Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienzsteigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbsumfeld behalten?
Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen.
Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden.
Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert.
Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions.
A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels?
In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany's climate protection targets. Previous research suggests that, since homeowners' decision-making processes are inadequately understood as yet, today's incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners' decision-making processes regarding insulation and to explore how situational factors, such as the structural condition of houses and social interaction, influence their insulation activity. Simulation experiments allow us furthermore to study the influence of socio-spatial structures such as residential segregation and population density on the diffusion of renovation behavior among homeowners. Based on the insights gained, we derive recommendations for designing innovative policy instruments. We conclude that the success of particular policy instruments aiming at increasing homeowners' insulation activity in a specific region depends on the socio-spatial structure at hand, and that reducing financial constraints only has a relatively low potential for increasing Germany's insulation rate. Policy instruments should also target the fact that specific renovation occasions are used to undertake additional insulation activities, e.g. by incentivizing lenders and craftsmen to advise homeowners to have insulation installed.
Transition modelling is an emerging but growing niche within the broader field of sustainability transitions research. The objective of this paper is to explore the characteristics of this niche in relation to a range of existing modelling approaches and literatures with which it shares commonalities or from which it could draw. We distil a number of key aspects we think a transitions model should be able to address, from a broadly acknowledged, empirical list of transition characteristics. We review some of the main strands in modelling of socio-technological change with regards to their ability to address these characteristics. These are: Eco-innovation literatures (energy-economy models and Integrated Assessment Models), evolutionary economics, complex systems models, computational social science simulations using agent based models, system dynamics models and socio-ecological systems models. The modelling approaches reviewed can address many of the features that differentiate sustainability transitions from other socio-economic dynamics or innovations. The most problematic features are the representation of qualitatively different system states and of the normative aspects of change. The comparison provides transition researchers with a starting point for their choice of a modelling approach, whose characteristics should correspond to the characteristics of the research question they face. A promising line of research is to develop innovative models of co-evolution of behaviours and technologies towards sustainability, involving change in the structure of the societal and technical systems.
Lessons for model use in transition research : a survey and comparison with other research areas
(2015)
The use of models to study the dynamics of transitions is challenging because of several aspects of transitions, notably complexity, multi-domain and multi-level interactions. These challenges are shared by other research areas that extensively make use of models. In this article we survey experiences and methodological approaches developed in the research areas of social-ecological modeling, integrated assessment, and environmental modeling, and derive lessons to be learnt for model use in transition studies. In order to account for specific challenges associated with different kinds of model applications we classify models according to their uses: for understanding transitions, for providing case-specific policy advice, and for facilitating stakeholder processes. The assessment reveals promising research directions for transition modeling, such as model-to-model analysis, pattern-oriented modeling, advanced sensitivity analysis, development of a shared conceptual framework, and use of modeling protocols.