Refine
Year of Publication
Document Type
- Peer-Reviewed Article (14)
- Report (12)
- Working Paper (5)
- Part of a Book (4)
- Conference Object (4)
- Contribution to Periodical (1)
- Doctoral Thesis (1)
Resource use of wind farms in the German North Sea : the example of Alpha Ventus and Bard Offshore I
(2013)
The German government aims to obtain at least 40 percent of its electricity from renewable sources by 2030. One of the central steps to reach this target is the construction of deep sea offshore wind farms. The paper presents a material intensity analysis of the offshore wind farms "Alpha Ventus" and "Bard Offshore I" under consideration of the grid connection. An additional onshore scenario is considered for comparison. The results show that offshore wind farms have higher resource consumption than onshore farms. In general, and in respect to the resource use of other energy systems, both can be tagged as resource efficient.
The concept Material Input per Service Unit (MIPS) was developed 20 years ago as a measure for the overall natural resource use of products and services. The material intensity analysis is used to calculate the material footprint of any economic activities in production and consumption. Environmental assessment has developed extensive databases for life cycle inventories, which can additionally be adopted for material intensity analysis. Based on practical experience in measuring material footprints on the micro level, this paper presents the current state of research and methodology development: it shows the international discussions on the importance of accounting methodologies to measure progress in resource efficiency. The MIPS approach is presented and its micro level application for assessing value chains, supporting business management, and operationalizing sustainability strategies is discussed. Linkages to output-oriented Life Cycle Assessment as well as to Material Flow Analysis (MFA) at the macro level are pointed out. Finally we come to the conclusion that the MIPS approach provides relevant knowledge on resource and energy input at the micro level for fact-based decision-making in science, policy, business, and consumption.
Für die Umsetzung der Energiewende und speziell den Ausbau erneuerbarer Energien sind nicht nur energiewirtschaftliche oder Klimaschutz-Kriterien maßgeblich. Zu einer umfassenden Nachhaltigkeitsbewertung gehört unter anderem auch die Ressourcenbewertung. Hier ist unstrittig, dass die Gesamt-Ressourceninanspruchnahme eines Energiesystems generell erheblich niedriger ist, wenn dieses nicht auf fossilen, sondern auf erneuerbaren Energien basiert (und dabei nicht hauptsächlich auf Biomasse ausgerichtet ist). Bisher wurde jedoch insbesondere der Verbrauch und die langfristige Verfügbarkeit der mineralischen Rohstoffe, die in der Regel zur Herstellung von Energiewandlern und Infrastruktur benötigt werden, wenig untersucht.
Im Rahmen des Projekts KRESSE wurde daher erstmals analysiert, welche "kritischen" mineralischen Rohstoffe für die Herstellung von Technologien, die Strom, Wärme und Kraftstoffe aus erneuerbaren Energien erzeugen, bei einer zeitlichen Perspektive bis zum Jahr 2050 in Deutschland relevant sind. Die Einschätzung als "kritisch" umfasst dabei die langfristige Verfügbarkeit der identifizierten Rohstoffe, die Versorgungssituation, die Recyclingfähigkeit und die Umweltbedingungen der Förderung. Die Studie macht deutlich, dass die geologische Verfügbarkeit mineralischer Rohstoffe für den geplanten Ausbau der erneuerbaren Energien in Deutschland grundsätzlich keine limitierende Größe darstellt. Dabei kann jedoch möglicherweise nicht jede Technologievariante unbeschränkt zum Einsatz kommen.
Im Rahmen des Forschungsprojektes wurde auf der Ebene von privaten Haushalten untersucht, in welchem Ausmaß eine Bedürfnisbefriedigung mit materiellen Gütern innerhalb der Randbedingungen von globaler Gerechtigkeit, einer nachhaltigen Rohstoffnutzung und einer umweltverträglichen Gesellschaft möglich ist. Zur Bestimmung des Rohstoffbedarfs langlebiger Haushaltsgüter wurden das methodische Konzept der Verfügungskorridore entwickelt und empirisch fundiert sowie global tragfähige Ausstattungen für verschiedene Haushalte prototypisch dargestellt. Das im Rahmen des Projekts entwickelte Webtool veranschaulicht wesentliche Ergebnisse des Forschungsvorhabens. Vor dem Hintergrund ihrer eigenen Haushaltsausstattungen wird den Nutzer/-innen des Webtools das Forschungsthema "Rohstoffverbrauch und Nachhaltigkeit" exemplarisch veranschaulicht, wodurch eine konkrete Reflexion des eigenen Konsumverhaltens ermöglicht wird.
The German government has set itself the target of reducing the country's GHG emissions by between 80 and 95% by 2050 compared to 1990 levels. Alongside energy efficiency, renewable energy sources are set to play the main role in this transition. However, the large-scale deployment of renewable energies is expected to cause increased demand for critical mineral resources. The aim of this article is therefore to determine whether the transformation of the German energy system by 2050 ("Energiewende") may possibly be restricted by a lack of critical minerals, focusing primarily on the power sector (generating, transporting and storing electricity from renewable sources). For the relevant technologies, we create roadmaps describing a number of conceivable quantitative market developments in Germany. Estimating the current and future specific material demand of the options selected and projecting them along a range of long-term energy scenarios allows us to assess potential medium- or long-term mineral resource restrictions. The main conclusion we draw is that the shift towards an energy system based on renewable sources that is currently being pursued is principally compatible with the geological availability and supply of mineral resources. In fact, we identified certain sub-technologies as being critical with regard to potential supply risks, owing to dependencies on a small number of supplier countries and competing uses. These sub-technologies are certain wind power plants requiring neodymium and dysprosium, thin-film CIGS photovoltaic cells using indium and selenium, and large-scale redox flow batteries using vanadium. However, non-critical alternatives to these technologies do indeed exist. The likelihood of supplies being restricted can be decreased further by cooperating even more closely with companies in the supplier countries and their governments, and by establishing greater resource efficiency and recyclability as key elements of technology development.
The European Horizon 2020-project COMBI ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe") aims at estimating the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in the year 2030. The project goal is to cover the most important technical potentials identified for the EU27 by 2030 and to come up with consistent estimates for the most relevant impacts: air pollution (and its effects on human health, eco-systems/crops, buildings), social welfare (including disposable income, comfort, health and productivity), biotic and abiotic resources, the energy system and energy security and the macro economy (employment, economic growth and the public budget). This paper describes the overall project research design, envisaged methodologies, the most critical methodological challenges with such an ex-ante evaluation and with aggregating the multiple impacts. The project collects data for a set of 30 energy efficiency improvement actions grouped by energy services covering all sectors and EU countries. Based on this, multiple impacts will be quantified with separate methodological approaches, following methods used in the respective literature and developing them where necessary. The paper outlines the approaches taken by COMBI: socio-economic modelling for air pollution and social welfare, resource modelling for biotic/abiotic and economically unused resources, General Equilibrium modelling for long-run macroeconomic effects and other models for short-run effects, and the LEAP model for energy system modelling. Finally, impacts will be aggregated, where possible in monetary terms. Specific challenges of this step include double-counting issues, metrics, within and cross-country/regional variability of effects and context-specificity.
The paper describes patterns of resource use related to German households' equipment. Using cluster analysis and material flow accounting, data on socio-demographic characteristics, and expenditures on fuel, electricity and household equipment allow for a differentiation of seven different household types. The corresponding resource use, expressed in Material Footprint per person and year, is calculated based on cradle-to-gate material flows of average household goods and the related household energy use. Our results show that patterns of resource use are mainly driven by the use of fuel and electricity and the ownership of cars. The quantified Material Footprints correlate to social status and are also linked to city size, age and household size. Affluent, established and/or younger families living in rural areas typically show the highest amounts of durables and expenditures on non-durables, thus exhibiting the highest use of natural resources.