The number of input-output assessments focused on energy has grown considerably in the last years. Many of these assessments combine data from multi-regional input-output (MRIO) databases with energy extensions that completely or partially depict the different stages through which energy products are supplied or used in the economy.
The improper use of some energy extensions can lead to double accounting of some energy flows, but the frequency with which this happens and the potential impact on the results are unknown. Based on a literature review, we estimate that around a quarter of the MRIO-based energy assessments reviewed incurred into double accounting. Using the EXIOBASE MRIO database, we also analyse the effects of double accounting in the absolute values and rankings of different countries' and products' energy footprints.
Building on the insights provided by our analysis, we offer a set of key recommendations to MRIO users to avoid the double accounting problem in the future. Likewise, we conclude that the harmonisation of the energy data across MRIO databases led by experts could simplify the choices of the data users until the provision of official energy extensions by statistical offices becomes a widespread practice.
Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle patterns towards this direction. This perspective highlights the research capacity needed to inform on the role and potential of the circular economy for climate change mitigation and to enhance the scientific capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing conceptual and methodological bridges amongst the relevant and currently fragmented research communities, thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sustainable development. Following similar calls for science in support of climate action, a transdisciplinary scientific agenda is needed to co-create the goals and scientific processes underpinning the transition pathways towards a circular, net-zero economy with representatives from policy, industry, and civil society. Here, it is argued that such integration of disciplines, methods, and communities can then lead to new and/or structurally enhanced quantitative systems models that better represent critical industrial value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement towards assessing the material implications of, and the contribution of enhanced circularity performance to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the transition to a circular economy.
Driving forces of changing environmental pressures from consumption in the European food system
(2020)
The paper provides an integrated assessment of environmental and socio-economic effects arising from final consumption of food products by European households. Direct and indirect effects accumulated along the global supply chain are assessed by applying environmentally extended input-output analysis (EE-IOA). EXIOBASE 3.4 database is used as a source of detailed information on environmental pressures and world input-output transactions of intermediate and final goods and services. An original methodology to produce detailed allocation matrices to link IO data with household expenditure data is presented and applied. The results show a relative decoupling between environmental pressures and consumption over time and shows that European food consumption generates relatively less environmental pressures outside Europe (due to imports) than average European consumption. A methodological framework is defined to analyze the main driving forces by means of a structural decomposition analysis (SDA). The results of the SDA highlight that while technological developments and changes in the mix of consumed food products result in reductions in environmental pressures, this is offset by growth in consumption. The results highlight the importance of directing specific research and policy efforts towards food consumption to support the transition to a more sustainable food system in line with the objectives of the EU Farm to Fork Strategy.
Providing a knowledge base for decarbonizing the Kazakh metals industries (DeKaMe) : final report
(2025)
Kazakhstan is one of the world's largest producers of metals such as uranium, iron, steel, copper, zinc and aluminium. This makes metallurgy, in particular the iron and steel industry, one of the largest emitters of greenhouse gases (GHG) in Kazakhstan's industrial sector. Kazakhstan has set itself the goal of achieving a climate-neutral economy by 2060. The country’s strategy for achieving climate neutrality includes the transformation of the Kazakh steel and aluminium industries to almost GHG neutral production.
Against this background, the overarching objective of the DeKaMe project was to provide a knowledge base on which Kazakh policymakers and stakeholders can draw to define technological pathways towards a deep decarbonisation of steel and aluminium industries in Kazakhstan and for the design of supporting policy instruments.
The project team identified and described technological options for decarbonising the iron and steel industry as well as the aluminium industry and summarised their advantages and disadvantages in the Kazakh context. In order to provide the Kazakh authorities with a broad portfolio of policy options, the researchers also identified and described policy instruments for decarbonising the steel and aluminium industries, including best-practice examples and international activities on green lead markets. To collect data and validate the findings, stakeholder interviews were conducted. The project results were presented in a webinar to Kazakh stakeholders.