Refine
Has Fulltext
- yes (2)
Year of Publication
- 2022 (2)
Document Type
- Peer-Reviewed Article (1)
- Report (1)
Division
Model-based scenario analyses of future energy systems often come to deviating results and conclusions when different models are used. This may be caused by heterogeneous input data and by inherent differences in model formulations. The representation of technologies for the conversion, storage, use, and transport of energy is usually stylized in comprehensive system models in order to limit the size of the mathematical problem, and may substantially differ between models. This paper presents a systematic comparison of nine power sector models with sector coupling. We analyze the impact of differences in the representation of technologies, optimization approaches, and further model features on model outcomes. The comparison uses fully harmonized input data and highly simplified system configurations to isolate and quantify model-specific effects. We identify structural differences in terms of the optimization approach between the models. Furthermore, we find substantial differences in technology modeling primarily for battery electric vehicles, reservoir hydro power, power transmission, and demand response. These depend largely on the specific focus of the models. In model analyses where these technologies are a relevant factor, it is therefore important to be aware of potential effects of the chosen modeling approach. For the detailed analysis of the effect of individual differences in technology modeling and model features, the chosen approach of highly simplified test cases is suitable, as it allows to isolate the effects of model-specific differences on results. However, it strongly limits the model's degrees of freedom, which reduces its suitability for the evaluation of fundamentally different modeling approaches.
In den letzten Jahren wurden zahlreiche Optimierungsmodelle entwickelt, um die Bewertung von Strategien für die zukünftige Entwicklung von Energieversorgungssystemen wissenschaftlich zu unterstützen. Analysen zur zukünftigen Ausgestaltung des Energiesystems und seines Betriebs, die auf der Anwendung dieser Modelle basieren, kommen jedoch meist zu unterschiedlichen Ergebnissen. Dies liegt zum einen an unterschiedlichen Annahmen in den Modelleingangsdaten, zum anderen an Unterschieden in den Modellformulierungen. Modelle zur Analyse nationaler Energiewendeszenarien unterscheiden sich in der Regel in ihrer räumlichen und zeitlichen Granularität sowie in ihrem technologischen Umfang und Detailgrad. Begrenzte Rechenkapazitäten machen einen Kompromiss zwischen diesen Dimensionen erforderlich. Eine hohe räumliche und/oder zeitliche Granularität geht somit mit einer starken Vereinfachung der Darstellung von Technologieeigenschaften einher. Diese Vereinfachungen können von Modell zu Modell unterschiedlich sein.
Vor dem Hintergrund dieser Problemstellung lag der Fokus des Projekts FlexMex auf der Bewertung des Einflusses der Modelleigenschaften auf die berechneten Ergebnisse. Um datenbedingte von modellbedingten Unterschieden zu trennen wurde somit ein einheitlicher Satz an Eingangsparametern entwickelt und in allen Modellen verwendet. Die Szenariovorgaben schließen dabei die techno- ökonomischen Technologieparameter, Brennstoff- und CO2-Zertifikatspreise, Annahmen zur Strom-, Wärme- und Wasserstoffnachfrage, das Dargebot der Stromerzeugung aus erneuerbarer Energie (EE) sowie die Potenziale von Lastmanagement und weiteren Flexibilitätsoptionen ein. Zudem wurden in den Szenarien ohne modellendogene Ausbauoptimierung auch die installierten Kapazitäten der betrachteten Energiewandler, -speicher und -netze harmonisiert. Die Ausnahme bildeten hier Untersuchungen mit Betrachtung einer modellendogenen Optimierung der Anlagenkapazitäten. Gemäß dem Fokus auf dem stündlichen Einsatz von Flexibilitätsoptionen wurden im Modellvergleich überwiegend Versorgungssysteme mit hohen Erzeugungsanteilen fluktuierender erneuerbarer Stromerzeugung aus Wind und Photovoltaik betrachtet.
Der Modellvergleich setzte sich aus zwei, aufeinander aufbauenden Teilen zusammen. Im ersten Teil des Vergleichs stand die detaillierte Analyse der Auswirkung von Unterschieden in den Modellierungsansätzen und der Abbildung einzelner Technologien im Vordergrund. Dafür wurden die betrachteten Flexibilitätsoptionen jeweils einzeln in einem stark vereinfachten System betrachtet. Dieses setzt sich zusammen aus fluktuierender Erzeugung aus Windenergie und Photovoltaik, jeweils mit der Option der Abregelung und der zu analysierenden alternativen Flexibilitätsoptionen. Aufgrund der Vielfalt der betrachteten Optionen - Stromspeicher, Stromübertragungsnetze, Lastmanagement und verschiedene Technologien der flexiblen Sektorenkopplung - ergeben sich daraus insgesamt 22 Modellläufen. Da sich die Unterschiede in der Technologieabbildung auf jeweils eine Technologie beschränken, können Abweichungen in den Ergebnissen diesen direkt zugeordnet werden.
Im zweiten Teil des Modellvergleichs wurden alle Flexibilitätsoptionen gemeinsam und folglich auch deren vielfältige Wechselwirkungen betrachtet. Im Rahmen der Betrachtung von 16 Testfällen wurde die sich aus der Modellwahl ergebende Unsicherheit in den Ergebnissen quantifiziert. Diese Testfälle unterscheiden sich im Ausbau von Windkraft- und Photovoltaikanlagen, in der Verfügbarkeit verschiedener Flexibilitätsoptionen, sowie in der Berücksichtigung eines endogenen Zubaus dieser Flexibilitätsoptionen.