The development of digital technologies is accelerating, enabling increasingly profound changes in increasingly short time periods. The changes affect almost all areas of the economy as well as society. The energy sector has already seen some effects of digitalization, but more drastic changes are expected in the next decades. Besides the very positive impacts on costs, system stability, and environmental effects, potential obstacles and risks need to be addressed to ensure that advantages can be exploited while adverse effects are avoided. A good understanding of available and future digital applications from different stakeholders' perspectives is necessary. This study proposes a framework for the holistic evaluation of digital applications in the energy sector. The framework consists of a combination of well-established methods, namely the multi-criteria analysis (MCA), the life cycle assessment (LCA), and expert interviews. The objective is to create transparency on benefits, obstacles, and risks as a basis for societal and political discussions and to supply the necessary information for the sustainable development and implementation of digital applications. The novelty of the proposed framework is the specific combination of the three methods and its setup to enable sound applicability to the wide variety of digital applications in the energy sector. The framework is tested subsequently on the example of the German smart meter roll-out. The results reveal that, on the one hand, the smart meter roll-out clearly offers the potential to increase the system stability and decrease the carbon emission intensity of the energy system. Therefore, the overall evaluation from an environmental perspective is positive. However, on the other hand, close attention needs to be paid to the required implementation and operational effort, the IT (information technology) and data security, the added value for the user, the social acceptance, and the realization of energy savings. Therefore, the energy utility perspective in particular results in an overall negative evaluation. Several areas with a need for action are identified. Overall, the proposed framework proves to be suitable for the holistic evaluation of this digital application.
Im Vergleich zu den Jahrzehnten zuvor ist das Energiesystem heute durch eine hohe Dynamik gekennzeichnet und steht unter ständigem Veränderungsdruck. Im vorliegenden Artikel diskutieren die Autoren die Rolle der Digitalisierung in den derzeitigen Prozessen. Sie nutzen dafür die Mehr-Ebenen-Perspektive (Multi Level Perspective, MLP). Diese sieht Transformation als ein Zusammenspiel von externen und internen Faktoren an: Die äußeren übergeordneten Entwicklungen kreieren einen Veränderungsdruck auf das Regime von außen, welches infolgedessen aus der Balance geraten kann. Darüber hinaus eröffnen sich Möglichkeiten für zielgerichtete Veränderungen im System durch die erfolgreiche Etablierung von innovativen Ansätzen. Letzteres gilt gerade für die breiten Anwendungspotenziale der Digitalisierung.
Die beiden Autoren zeichnen die Transformationsprozesse im Energiesektor seit Beginn der Liberalisierung nach und blicken anschließend auf die Herausforderungen in der jetzigen Phase der Energiewende - darunter die Systemintegration erneuerbarer Energien in das Stromsystem und die digitale Vernetzung. Der Artikel schließt ab mit einer Analyse externer und interner Faktoren, die eine Digitalisierung des Energiesektors weiter vorantreiben.
Digitalization is a transformation process which has already affected many parts of industry and society and is expected to yet increase its transformative speed and impact. In the energy sector, many digital applications have already been implemented. However, a more drastic change is expected during the next decades. Good understanding of which digital applications are possible and what are the associated benefits as well as risks from the different perspectives of the impacted stakeholders is of high importance. On the one hand, it is the basis for a broad societal and political discussion about general targets and guidelines of digitalization. On the other hand, it is an important piece of information for companies in order to develop and sustainably implement digital applications. This article provides a structured overview of potential digital applications in the German energy (electricity) sector, including the associated benefits and the impacted stakeholders on the basis of a literature review. Furthermore, as an outlook, a methodology to holistically analyze digital applications is suggested. The intended purpose of the suggested methodology is to provide a complexity-reduced fact base as input for societal and political discussions and for the development of new digital products, services, or business models. While the methodology is outlined in this article, in a follow-up article the application of the methodology will be presented and the use of the approach reflected.
Im Energiesektor hat die Digitalisierung bereits viele Abläufe der Wertschöpfungskette verändert. Es besteht jedoch weiterhin erhebliches Potenzial zur Nutzung von digitalen Anwendungen. Insofern ist mit weiteren tiefgreifenden Veränderungen zu rechnen. Neben den zahlreichen Nutzen bestehen auch potenzielle negative Auswirkungen. Die so entstehenden Spannungsfelder müssen frühzeitig analysiert werden, um Lösungsoptionen für potenzielle Hindernisse zu erarbeiten um somit den größtmöglichen Nutzen der Digitalisierung erzielen zu können.
Die Digitalisierung ist längst gelebte Praxis. Jeden Tag werden Milliarden an "digitalen" Handlungen ausgeführt. Beispielsweise werden täglich 207 Mrd. E-Mails verschickt, 8,8 Mrd. YouTube-Videos angesehen und 36 Mio. Amazonkäufe getätigt. Dabei nimmt die Geschwindigkeit, mit der neue Anwendungen entwickelt und etabliert werden, kontinuierlich zu. Es stellt sich also die Frage, was im Energiesektor zu erwarten ist und wie die Entwicklung zielgerichtet genutzt werden kann.
Der schnell fortschreitende Digitalisierungs- und Automatisierungsprozess ist heute schon ein wichtiger Wegbegleiter für die Transformation des aktuellen Energiesystems. Im vorliegenden Beitrag werden sechs Anwendungsbeispiele vorgestellt, die deutlich machen, dass die Energiewende ohne Digitalisierung nicht denkbar ist.
Transponder-based Aircraft Detection Lighting Systems (ADLS) are increasingly used in wind turbines to limit beacon operation times, reduce light emissions, and increase wind energy acceptance. The systems use digital technologies such as receivers of digital transponder signals, LTE/5G, and other information and communication technology. The use of ADLS will be mandatory in Germany both for new and existing wind turbines with a height of >100 m from 2023 (onshore) and 2024 (offshore), so a nationwide rollout is expected to start during 2022. To fully realize the benefits while avoiding risks and bottlenecks, a thorough and holistic understanding of the efforts required and the impacts caused along the life cycle of an ADLS is essential. Therefore, this study presents the first multi-aspect holistic evaluation of an ADLS. A framework for evaluating digital applications in the energy sector, previously developed by the authors, is refined and applied. The framework is based on multi-criteria analysis (MCA), life cycle assessment (LCA), and expert interviews. On an aggregated level, the MCA results show an overall positive impact from all stakeholders’ perspectives. Most positive impacts are found in the society and politics category, while most negative impacts are of technical nature. The LCA of the ADLS reveals a slightly negative impact, but this impact is negligible when compared to the total life cycle impact of the wind turbines of which the ADLS is a part. Besides the aggregated evaluation, detailed information on potential implementation risks, bottlenecks, and levers for life cycle improvement are presented. In particular, the worldwide scarcity of the required semiconductors, in combination with the general lack of technicians in Germany, lead to the authors’ recommendation for a limited prolongation of the planned rollout period. This period should be used by decision-makers to ensure the availability of technical components and installation capacities. A pooling of ADLS installations in larger regions could improve plannability for manufacturers and installers. Furthermore, an ADLS implementation in other countries could be supported by an early holistic evaluation using the presented framework.