The potential of mixed-mode office buildings with varying design and control parameters is examined by using an uncertainty analysis in the three climate zones of India. The analysis is in terms of cooling energy consumption, thermal comfort conditions, and natural ventilation hours. Furthermore, influential parameters are identified using sensitivity analysis. In this study, opening the windows enables natural ventilation. Night-time ventilation through the windows is not enabled because these are mostly closed at night. A maximum natural ventilation of 10% of the total building occupancy hours are observed in warm and humid, and hot and dry climates; however, they are slightly higher in the composite climate. A further increase in the number of natural ventilation hours leads to an increase in the occupancy hours outside the Indian Model for Adaptive Comfort model for mixed-mode buildings with at least 90% of occupants are satisfied. There are no occupancy hours outside of 80% of occupants are satisfied. The choice of thermal comfort band is crucial for determining the potential of mixed-mode buildings. The cooling setpoint temperature, building size, window solar heat gain coefficient, and surface properties of exterior surfaces are identified as the more influential parameters than the thermophysical properties of building envelope constructions. Although the building envelope which is in compliance with the Energy Efficient Building Code of India increases energy efficiency during air-conditioning periods, whether it reduces natural ventilation hours, because of overheating during such period remains to be determined.
In warm and hot climates, ceiling fans and/or air conditioners (ACs) are used to maintain thermal comfort. Ceiling fans provide air movement near the skin, which enhances the evaporation of sweat, reduces heat stress, and enhances thermal comfort. This is also called the cooling effect. However, AC usage behaviour and the effects of elevated air speed through the use of ceiling fans on indoor operative temperature during AC usage are not widely studied. This study investigated the optimum AC (cooling) set point temperature and air velocity necessary for maintaining thermal comfort while achieving energy conservation, in mixed-mode buildings in India, through field studies by using used custom-built Internet of Things (IOT) devices. In the current study, the results indicate a 79% probability that comfort conditions can be maintained by achieving a temperature drop of 3K. If this drop can be achieved, as much as possible, through passive measures, the duration of AC operation and its energy consumption are reduced, at least by 67.5 and 58.4%, respectively. During the air-conditioned period, there is a possibility that the cooing effect is reduced because of increase in operative temperature due to ceiling fan operation. Therefore, the optimum solution is to maintain the highest AC set point and minimum fan speed setting that are acceptable.