Refine
Year of Publication
Document Type
- Peer-Reviewed Article (13)
- Report (10)
- Conference Object (7)
- Working Paper (5)
- Part of a Book (2)
- Doctoral Thesis (1)
Language
- English (38) (remove)
In this paper a new method for the evaluation and comparison of potential future electricity systems is presented. The German electricity system in the year 2050 is used as an example. Based on a comprehensive scenario analysis defining a corridor for possible shares of fluctuating renewable energy sources (FRES) residual loads are calculated in a unified manner. The share of electricity from PV and wind power plants in Germany in the year 2050 is in a range of 42-122% and the load demand has a bandwidth of around 460-750 TWh. The residual loads are input for an algorithm that defines a supplementary mix of technologies providing flexibility to the system. The overall system layout guarantees the balance of generation and demand at all times. Due to the fact that the same method for residual load calculation and mixture of technologies is applied for all scenarios, a good comparability is guaranteed and we are able to identify key characteristics for future developments. The unique feature of the new algorithms presented here is the very fast calculation for a year-long simulation with hourly or shorter time steps taking into account the state of charge or availability of all storage and flexibility technologies. This allows an analysis of many different scenarios on a macro-economic level, variation of input parameters can easily be done, and extensive sensitivity analysis is possible. Furthermore different shares of FRES, CO2-emission targets, interest rates or social acceptance of certain technologies can be included. The capabilities of the method are demonstrated by an analysis of potential German power system layouts with a base scenario of 90% CO2-reduction target compared to 1990 and by the identification of different options for a power sector with a high degree of decarbonisation. The approach also aims at a very high level of transparency both regarding the algorithms and regarding the input parameters of the different technologies taken into account. Therefore this paper also gives a comprehensive and complete overview on the technology parameters used. The forecast on all technologies for the year 2050 regarding technical and economic parameters was made in a comprehensive consultation process with more than 100 experts representing academia and industry working on all different technologies. An extensive analysis of options for the design of potential German energy supply systems in 2050 based on the presented methodology will be published in a follow-up paper.
The Port of Rotterdam is an important industrial cluster mainly comprising of oil refining, chemical manufacturing and power and steam generation. In 2015, the area accounted for 18 % of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the port's economy is heavily exposed to future global and EU decarbonization policies, as the bulk of its activities focuses on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority, our paper explores possible pathways of how the industrial cluster can keep its strong market position in Europe and still reduce its CO2 emissions by 98 % by 2050. The "Biomass and CCS" scenario assumes that large amounts of biomass can be supplied sustainably and will be used in the port for power generation as well as for feedstock for refineries and the chemical industry. Fischer-Tropsch fuel generation plays an important role in this scenario, allowing the port to become a key cluster for the production of synthetic fuels and feedstocks in Western Europe. The "Closed Carbon Cycle" scenario assumes that renewables-based electricity will be used at the port to supply heat and hydrogen for the synthetic generation of feedstock for the chemical industry. The carbon required for the chemicals will stem from recycled waste. Technologies particularly needed in this scenario are water electrolysis and gasification or pyrolysis to capture carbon from waste, as well as technologies for the production of base chemicals from syngas. The paper compares both scenarios with regard to their respective technological choices and infrastructural changes. The scenarios’ particular opportunities and challenges are also discussed. Using possible future pathways of a major European petrochemical cluster as an example, the paper illustrates options for deep decarbonisation of energy intensive industries in the EU and beyond.
The need for an "Energy Roadmap 2050" triggered a multitude of studies that were conducted between 2009 and 2011, which again contained a multitude of decarbonisation scenarios, which achieve the EU's long-term emission mitigation target of reducing greenhouse gas emissions by at least 80% until 2050 (relative to 1990 emissions). The variety of important analysis is difficult to compare and utilize for specific and timely policy decisions. Thus the Smart Energy for Europe Platform (SEFEP) has commissioned a comparative study of relevant energy scenario studies for Europe. The findings of this comparative study are summarized here briefly.
Germany and Japan have both gained substantial experience with hydrogen production and applications, albeit with focus on different sectors. They also share similar drivers for hydrogen development and, of course, similar technical and economic opportunities and challenges. However, there also are relevant differences in the policy priorities and approaches.
Notwithstanding differing emphases and patterns, the two countries share three main drivers for hydrogen development and deployment: climate mitigation and other environmental goals, energy supply diversification, and technological leadership. In this context, hydrogen has been identified by the German and the Japanese governments during the Energy Policy Dialogue as having potential for closer cooperation.
The authors of this study provide an overview of demand-side deployment by sector (residential, transport, industry, power generation and power-to-x) for both countries, as well as of their hydrogen policy debates, key institutions, R&D programs and demonstration projects. They also present a short survey on relevant international platforms and initiatives in which Japan and Germany participate.
On the basis of a meta-analysis of the role of hydrogen in 18 long-term energy system scenarios for Germany and 12 scenarios for Japan, this study draws conclusions on the possible role of hydrogen in the long term energy policy debates of both countries. Subsequently, the authors discuss sustainability criteria and certification schemes for clean hydrogen, compare the greenhouse gas intensity of different hydrogen supply chains and provide a data-based analysis to identify countries which could become important suppliers of clean hydrogen.
Several low-carbon energy roadmaps and scenarios have recently been published by the European Commission and the International Energy Agency (IEA) as well as by various stakeholders such as Eurelectric, ECF and Greenpeace. Discussions of these studies mainly focus on technology options available on the electricity supply side and mostly omit the significant challenges that all of the scenarios impose on the energy demand side.
A comparison of 5 decarbonisation scenarios from 4 of the most relevant recent scenario studies for the EU shows that all of them imply significant efficiency improvements in traditional appliances, usually well above levels historically observed over longer periods of time. At the same time they assume substantial electrification of transportation and heating. The scenarios suggest that both of these challenges need to be tackled successfully for decarbonising the energy system.
With shares of renewable electricity reaching at least 60 % of supply in 2050 in almost all of the decarbonisation scenarios, the adaptation of demand to variable supply becomes increasingly important. This aspect of demand side management should therefore be part of any policy mix aiming for a low-carbon power system.
Based on a quantitative analysis of 5 decarbonisation scenarios and a comparison with historical evidence we derive the (implicit) new challenges posed by the current low-carbon roadmaps and develop recommendations for energy policy on the electricity demand side.
International consensus is growing that a transition towards a low carbon society (LCS) is needed over the next 40 years. The G8, the Major Economies Forum on Energy and Climate, as well as the Ad Hoc Working Group on Long-term Cooperative Action under the United Nations Framework Convention on Climate Change, have concluded that states should prepare their own Low-emission Plans or Low-emission Development Plans and such plans are in development in an increasing number of countries.
An analysis of recent long-term low emission scenarios for Germany shows that all scenarios rely heavily on a massive scale up of energy efficiency improvements based on past trends. However, in spite of the high potential that scenario developers assign to this strategy, huge uncertainty still exists in respect of where the efficiency potentials really lie, how and if they can be achieved and how much their successful implementation depends on more fundamental changes towards a more sustainable society (e.g. behavioural changes).
In order to come to a better understanding of this issue we specifically examine the potential for energy efficiency in relation to particular demand sectors. Our comparative analysis shows that despite general agreement about the high importance of energy efficiency (EE), the perception on where and how to achieve it differ between the analysed scenarios. It also shows that the close nexus between energy efficiency and non-technical behavioural aspects is still little understood. This leads us to the conclusion that in order to support energy policy decisions more research should be done on energy efficiency potential. A better understanding of its potential would help energy efficiency to fulfil its role in the transition towards a LCS.
Contrary to "static" pathways that are defined once for all, this article deals with the need for policy makers to adopt a dynamic adaptive policy pathway for managing decarbonization over the period of implementation. When choosing a pathway as the most desirable option, it is important to keep in mind that each decarbonization option relies on the implementation of specific policies and instruments. Given structural, effectiveness, and timing uncertainties specific to each policy option, they may fail in delivering the expected outcomes in time. The possibility of diverging from an initial decarbonization trajectory to another one without incurring excessive costs should therefore be a strategic element in the design of an appropriate decarbonization strategy. The article relies on initial experiences in France and Germany on decarbonization planning and implementation to define elements for managing dynamic adjustment issues. Such an adaptive pathway strategy should combine long-lived incentives, like a pre-announced escalating carbon price, to form consistent expectations, as well as adaptive policies to improve overall robustness and resilience. We sketch key elements of a monitoring process based on an ex ante definition of leading indicators that should be assessed regularly and combined with signposts and trigger values at the subsector level.
On behalf of the Port of Rotterdam Authority, the Wuppertal Institute developed three possible pathways for a decarbonised port of Rotterdam until 2050. The port area is home to about 80 per cent of the Netherlands' petrochemical industry and significant power plant capacities. Consequently, the port of Rotterdam has the potential of being an international leader for the global energy transition, playing an important role when it comes to reducing CO2 emissions in order to deliver on the EU's long-term climate goals.
The three decarbonisation scenarios all built on the increasing use of renewables (wind and solar power) and the adoption of the best available technologies (efficiency). The analysis focuses on power plants, refineries and the chemical industry, which together are responsible for more than 90 per cent of the port area's current CO2 emissions.
The decarbonisation scenarios describe how CO2 emissions could be reduced by 75 to 98 per cent in 2050 (compared to 2015). Depending on the scenario, different mitigation strategies are relied upon, including electrification, closure of carbon cycles or carbon capture and storage (CCS). The study includes recommendations for local companies, the Port Authority as well as policy makers. In addition, the study includes a reference scenario, which makes it clear that a "business as usual" mentality will fall well short of contributing adequately to the EU's long-term climate goals.
Following the decisions of the Paris climate conference at the end of 2015 as well as similar announcements e.g. from the G7 in Elmau (Germany) in the summer of 2015, long-term strategies aiming at (almost) full decarbonisation of the energy systems increasingly move into the focus of climate and energy policy. Deep decarbonisation obviously requires a complete switch of energy supply towards zero GHG emission sources, such as renewable energy. A large number of both global as well as national climate change mitigation scenarios emphasize that energy efficiency will likewise play a key role in achieving deep decarbonization. However, the interdependencies between a transformation of energy supply on the one hand and the role of and prospects for energy efficiency on the other hand are rarely explored in detail.
This article explores these interdependencies based on a scenario for Germany that describes a future energy system relying entirely on renewable energy sources. Our analysis emphasizes that generally, considerable energy efficiency improvements on the demand side are required in order to have a realistic chance of transforming the German energy system towards 100 % renewables. Efficiency improvements are especially important if energy demand sectors will continue to require large amounts of liquid and gaseous fuels, as the production of these fuels are associated with considerable energy losses in a 100 % renewables future. Energy efficiency on the supply side will therefore differ considerably depending on how strongly the use of liquid and gaseous fuels in the various demand sectors can be substituted through the direct use of electricity. Apart from a general discussion of the role of energy efficiency in a 100 % renewable future, we also look at the role of and prospects for energy efficiency in each individual demand sector.
In recent years, a number of energy scenario studies which aim to advise policy makers on appropriate energy policy measures have been developed. These studies highlight changes required to achieve a future energy system that is in line with public policy goals such as reduced greenhouse gas emissions and an affordable energy supply. We argue that behavioural changes towards energy-sufficient lifestyles have considerable potential to contribute to public policy goals and may even be indispensable for achieving some of these goals. This potential should, therefore, be reflected in scenario studies aiming to provide comprehensive advice to policy makers. We analyse the role that energy-sufficient lifestyles play in prominent recent global energy scenario studies and find that these studies largely ignore the potential of possible behavioural changes towards energy-sufficient lifestyles. We also describe how such changes have been considered in several other scenario studies, in order to derive recommendations for the future development of global energy scenarios. We conclude that the inclusion of lifestyle changes in energy scenarios is both possible and useful. Based on our findings, we present some general advice for energy scenario developers on how to better integrate sufficiency into future energy scenario studies in a quantitative manner.