Refine
Has Fulltext
- yes (66) (remove)
Year of Publication
Document Type
- Report (26)
- Peer-Reviewed Article (21)
- Conference Object (9)
- Working Paper (6)
- Contribution to Periodical (3)
- Part of a Book (1)
Die vom Wuppertal Institut für Fridays for Future durchgeführten Analysen legen nahe, dass das Erreichen von CO2-Neutralität bis 2035 aus technischer und ökonomischer Sicht zwar extrem anspruchsvoll wäre, grundsätzlich aber möglich ist. Diese Zielsetzung wäre in allen Sektoren mit großen Herausforderungen verbunden und würde beispiellose politische Anstrengungen erfordern.
Das Ziel der Klimaneutralität bis zum Jahr 2045 stellt nicht zuletzt den Industriesektor vor erhebliche Herausforderungen. Für diesen Sektor werden teilweise sehr unterschiedliche Entwicklungspfade in Richtung Klimaneutralität beschrieben, wie ein Blick in verschiedene aktuelle Szenariostudien zeigt. Dennoch gibt es auch im Industriesektor bestimmte Emissionsminderungsstrategien, die in allen vorliegenden Szenarien als unverzichtbar angesehen werden.
In der vorliegenden Studie steht die Forschungsfrage im Mittelpunkt, ob ein vollständig auf erneuerbaren Energien beruhendes Stromsystem mit hohen Importanteilen von rund 10 bis 20 % nach heutigem Stand des Wissens als technisch-ökologisch realisierbar angesehen werden kann. Als Grundlage für die Untersuchung wird in erster Linie auf eine Reihe von Szenariostudien zurückgegriffen, die ein weitgehend treibhausgasemissionsfreies, zu 90 bis 100 % auf regenerativer Erzeugung basierendes und von hohen Stromimportanteilen gekennzeichnetes Stromsystem mit dem Zeithorizont 2050 modellieren und beschreiben. Dabei werden analog zu Szenarien für Deutschland auch vorliegende Szenarien für Europa in den Blick genommen, die für den europäischen Kontinent wesentliche Nettostromimporte aus Nordafrika vorsehen.
Das Ziel der Klimaneutralität ist eine große Herausforderung, insbesondere für die Industrie. Dieser Artikel analysiert und vergleicht verschiedene Strategien zur Transformation des Industriesektors, wie sie in aktuellen deutschen, europäischen und globalen Klimaschutzszenarien beschrieben werden. Zunächst werden zehn Schlüsselstrategien für weitgehende Treibhausgasemissionsreduktionen im Industriesektor identifiziert. Anschließend wird in einer Szenario-Metaanalyse untersucht, in welchem Maße verschiedene Szenarien jeweils auf die einzelnen Strategien setzen. Dabei zeigt sich, dass es zwischen den Szenarien teilweise erhebliche Unterschiede bezüglich der verfolgten Strategien gibt.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
Contrary to "static" pathways that are defined once for all, this article deals with the need for policy makers to adopt a dynamic adaptive policy pathway for managing decarbonization over the period of implementation. When choosing a pathway as the most desirable option, it is important to keep in mind that each decarbonization option relies on the implementation of specific policies and instruments. Given structural, effectiveness, and timing uncertainties specific to each policy option, they may fail in delivering the expected outcomes in time. The possibility of diverging from an initial decarbonization trajectory to another one without incurring excessive costs should therefore be a strategic element in the design of an appropriate decarbonization strategy. The article relies on initial experiences in France and Germany on decarbonization planning and implementation to define elements for managing dynamic adjustment issues. Such an adaptive pathway strategy should combine long-lived incentives, like a pre-announced escalating carbon price, to form consistent expectations, as well as adaptive policies to improve overall robustness and resilience. We sketch key elements of a monitoring process based on an ex ante definition of leading indicators that should be assessed regularly and combined with signposts and trigger values at the subsector level.
Transformative Innovationen : die Suche nach den wichtigsten Hebeln der Großen Transformation
(2021)
Der hier vorliegende Zukunftsimpuls soll den Grundgedanken der Transformativen Innovationen und ihre Notwendigkeit beschreiben sowie erste Kandidaten für solche Transformativen Innovationen aus diversen Arbeitsbereichen des Wuppertal Instituts vorstellen. Er dient vor allem als Einladung, gemeinsam mit dem Wuppertal Institut über solche Innovationen zu diskutieren, die irgendwo zwischen den großen Utopien und kleinen Nischenaktivitäten liegen. Denn es braucht nicht immer den ganz großen Wurf, um Veränderungen in Gang zu setzen.
Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of the European Union (EU), in the light of the EU's climate change mitigation objectives. Trends on indicators such as energy intensity and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios for the electricity, residential, transport, and industry sectors. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that the EU has made significant progress in decarbonising its energy systems. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Various electricity generation technologies using different primary energy sources are available. Many published studies compare the costs of these technologies. However, most of those studies only consider plant-level costs and do not fully take into account additional costs that societies may face in using these technologies. This article reviews the literature on the costs of electricity generation technologies, aiming to determine which types of costs are relevant from a societal point of view when comparing generation technologies. The paper categorises the relevant types of costs, differentiating between plant-level, system and external costs as the main categories. It discusses the relevance of each type of cost for each generation technology. The findings suggest that several low-carbon electricity generation technologies exhibit lower social costs per kWh than the currently dominant technologies using fossil fuels. More generally, the findings emphasise the importance of taking not only plant-level costs, but also system and external costs, into account when comparing electricity generation technologies from a societal point of view. The article intends to inform both policymakers and energy system modellers, the latter who may strive to include all relevant types of costs in their models.
Germany and Japan have both gained substantial experience with hydrogen production and applications, albeit with focus on different sectors. They also share similar drivers for hydrogen development and, of course, similar technical and economic opportunities and challenges. However, there also are relevant differences in the policy priorities and approaches.
Notwithstanding differing emphases and patterns, the two countries share three main drivers for hydrogen development and deployment: climate mitigation and other environmental goals, energy supply diversification, and technological leadership. In this context, hydrogen has been identified by the German and the Japanese governments during the Energy Policy Dialogue as having potential for closer cooperation.
The authors of this study provide an overview of demand-side deployment by sector (residential, transport, industry, power generation and power-to-x) for both countries, as well as of their hydrogen policy debates, key institutions, R&D programs and demonstration projects. They also present a short survey on relevant international platforms and initiatives in which Japan and Germany participate.
On the basis of a meta-analysis of the role of hydrogen in 18 long-term energy system scenarios for Germany and 12 scenarios for Japan, this study draws conclusions on the possible role of hydrogen in the long term energy policy debates of both countries. Subsequently, the authors discuss sustainability criteria and certification schemes for clean hydrogen, compare the greenhouse gas intensity of different hydrogen supply chains and provide a data-based analysis to identify countries which could become important suppliers of clean hydrogen.