The Paris Agreement calls on all nations to pursue efforts to contribute to limiting the global temperature increase to 1.5 °C above pre-industrial levels. However, due to limited global, regional and country-specific analysis of highly ambitious GHG mitigation pathways, there is currently a lack of knowledge about the transformational changes needed in the coming decades to reach this target. Through a meta-analysis of mitigation scenarios for Germany, this article aims to contribute to an improved understanding of the changes needed in the energy system of an industrialized country. Differentiation among six key long-term energy system decarbonization strategies is suggested, and an analysis is presented of how these strategies will be pursued until 2050 in selected technologically detailed energy scenarios for Germany. The findings show, that certain strategies, including the widespread use of electricity-derived synthetic fuels in end-use sectors as well as behavioral changes, are typically applied to a greater extent in mitigation scenarios aiming at high GHG emission reductions compared to more moderate mitigation scenarios. The analysis also highlights that the pace of historical changes observed in Germany between 2000 and 2015 is clearly insufficient to adequately contribute to not only the 1.5 °C target, but also the 2 °C long-term global target.
Nach den G7-Beschlüssen von Elmau und dem Klimaabkommen von Paris im Jahr 2015 ist das Thema der langfristigen Dekarbonisierung der Energiesysteme der Industrieländer in den Vordergrund der politischen und wissenschaftlichen Diskussion gerückt. Japan und Deutschland stehen als führende Industrienationen vor ähnlichen Herausforderungen, gleichzeitig können sich aber auch für beide Länder wirtschaftliche Entwicklungschancen aus der Dekarbonisierung ergeben. Aus diesem Grund bietet sich eine verstärkte Kooperation und die Initiierung gegenseitiger Lernprozesse besonders an. Die vorliegende Metaanalyse ambitionierter Klimaschutzszenarien für Japan und Deutschland stellt mit der Diskussion von langfristigen Dekarbonisierungsstrategien in beiden Ländern einen ersten Schritt in diese Richtung dar.
Die quantitative Analyse hat gezeigt, dass die Untersuchungsschwerpunkte der Szenarien - sowohl für Deutschland als auch für Japan - vielfach auf den THG-Emissionen des Energiesystems liegen. Die THG-Emissionen anderer Sektoren werden seltener und wenn, dann oft in geringerer Detailtiefe berücksichtigt. Der Vergleich von ambitionierten Dekarbonisierungsszenarien mit THG-Minderungszielen von 80 bis 100 Prozent zeigt in vielen Bereichen für Japan und Deutschland tendenziell recht ähnliche Entwicklungen und Strategien auf. Es wird deutlich, dass in beiden Ländern erhebliche Änderungen insbesondere im Energiesystem notwendig sind, um die anvisierten mittel- und langfristigen THG-Minderungsziele zu erreichen. Es werden ähnliche Annahmen zu Bevölkerungsentwicklung und Wirtschaftsentwicklung getroffen und es werden vergleichbare Entwicklungstrends bei vielen Ausprägungen des Energiesystems deutlich. Unterschiede zwischen den deutschen und japanischen Szenarien sowie zwischen den Szenarien der einzelnen Länder bestehen hingegen vor allem in Bezug auf Geschwindigkeit, Umfang und die Zusammensetzung der Strategieelemente.
Im Forschungsprojekt "Landscaping" untersuchte das Wuppertal Institut die für Nordrhein-Westfalen aus heutiger Sicht denkbaren Technologieansätze, die dafür nötigen politischen Rahmenbedingungen sowie mögliche Innovationen entlang der Wertschöpfungsketten. Bestandteil des Berichts sind Steckbriefe, in denen die möglichen Technologien für treibhausgasneutrale Industrieprozesse samt offener Forschungsfragen und Infrastrukturbedarfe dargestellt sind. Das Projekt entstand im Auftrag des Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.
Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of the European Union (EU), in the light of the EU's climate change mitigation objectives. Trends on indicators such as energy intensity and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios for the electricity, residential, transport, and industry sectors. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that the EU has made significant progress in decarbonising its energy systems. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Rather than examining aggregate emissions trends, this study delves deep into the dynamics affecting each sector of the EU energy system. It examines the structural changes taking place in power production, transport, buildings and industry, and benchmarks these with the changes required to reach the 2030 and 2050 targets. In so doing it aims to influence both the ambition and direction of future policy decisions, both at Member State and EU level.
In order to assess the adequacy of the EU and its Member States policies with the 2030 and 2050 decarbonisation objectives, this study goes beyond the aggregate GHG emissions or energy use figures and analyse the underlying drivers of emission changes, following a sectoral approach (power generation, buildings, industry, and transport). Historical trends of emission drivers are compared with the required long-term deep decarbonisation pathways, which provide sectoral "benchmarks" or "corridors" against which to analyse the rate and direction of historical change for each Member State and the EU in aggregate. This approach allows the identification of the necessary structural changes in the energy system and policy interventions to reach deep decarbonisation, and therefore the comparison with the current policy programs at European and Member State level.
Contrary to "static" pathways that are defined once for all, this article deals with the need for policy makers to adopt a dynamic adaptive policy pathway for managing decarbonization over the period of implementation. When choosing a pathway as the most desirable option, it is important to keep in mind that each decarbonization option relies on the implementation of specific policies and instruments. Given structural, effectiveness, and timing uncertainties specific to each policy option, they may fail in delivering the expected outcomes in time. The possibility of diverging from an initial decarbonization trajectory to another one without incurring excessive costs should therefore be a strategic element in the design of an appropriate decarbonization strategy. The article relies on initial experiences in France and Germany on decarbonization planning and implementation to define elements for managing dynamic adjustment issues. Such an adaptive pathway strategy should combine long-lived incentives, like a pre-announced escalating carbon price, to form consistent expectations, as well as adaptive policies to improve overall robustness and resilience. We sketch key elements of a monitoring process based on an ex ante definition of leading indicators that should be assessed regularly and combined with signposts and trigger values at the subsector level.