Refine
Year of Publication
Document Type
- Report (35)
- Peer-Reviewed Article (23)
- Conference Object (11)
- Working Paper (8)
- Part of a Book (7)
- Contribution to Periodical (7)
- Doctoral Thesis (1)
Power sector decarbonisation : metastudy ; WP 2.2 quantitative analysis of existing EU-wide studies
(2012)
Im Forschungsprojekt "Landscaping" untersuchte das Wuppertal Institut die für Nordrhein-Westfalen aus heutiger Sicht denkbaren Technologieansätze, die dafür nötigen politischen Rahmenbedingungen sowie mögliche Innovationen entlang der Wertschöpfungsketten. Bestandteil des Berichts sind Steckbriefe, in denen die möglichen Technologien für treibhausgasneutrale Industrieprozesse samt offener Forschungsfragen und Infrastrukturbedarfe dargestellt sind. Das Projekt entstand im Auftrag des Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.
Minderungspfade
(2021)
Das übergeordnete Ziel des Forschungs-Projektes RESTORE 2050 (Regenerative Stromversorgung & Speicherbedarf in 2050; Förderkennzeichen 03SF0439) war es, wissenschaftlich belastbare Handlungsempfehlungen für die Transformation des deutschen Stromsystems im europäischen Kontext zu geben. Dafür wurden auf Basis der zukünftig prognostizierten Entwicklung von Stromangebot und -nachfrage innerhalb des ENTSO-E Netzverbundes für den Zeithorizont des Jahres 2050 sowie mittels örtlich und zeitlich hoch aufgelöster meteorologischer Zeitreihen die Themenkomplexe (1) Nationale Ausbaustrategien für erneuerbare Energien, (2) Übertragungsnetzausbau und (3) Alternativmaßnahmen wie Lastmanagement, (4) Bedeutung des EE-Stromaustauschs mit Drittstaaten und (5) die Rolle von Stromspeichern auf Übertragungsnetzebene analysiert. Die aus den Untersuchungsergebnissen abgeleitenden Handlungsempfehlungen stellen wichtige Beiträge für die weitere Integration von erneuerbaren Energien dar und geben Hinweise für den Aufbau einer leistungsfähigen europäischen Infrastruktur.
Treibhausgasneutralität in Deutschland bis 2045 : ein Szenario aus dem Projekt SCI4climate.NRW
(2023)
Die klimapolitischen Ziele Deutschlands und der EU machen eine sehr schnelle und tiefgreifende Transformation sowohl der Energieversorgung als auch der energieverbrauchenden Sektoren notwendig. Diese Transformationsherausforderung betrifft nicht zuletzt die energieintensive Industrie in Deutschland, die vor grundlegenden technologischen Veränderungen wichtiger Produktionsprozesse steht. Die Herausforderungen für die Industrie werden durch die aktuelle Energiekrise weiter verschärft.
Vor diesem Hintergrund stellt das hier vorgestellte Klimaschutzszenario "SCI4climate.NRW-Klimaneutralität" (S4C-KN), das im Rahmen des vom Land NRW finanzierten Forschungsprojekts "SCI4climate.NRW" entwickelt wurde, die möglichen künftigen Entwicklungen in der energieintensiven Industrie in den Mittelpunkt der Analyse. Das Szenario analysiert diese Entwicklungen im Kontext eines gesamtwirtschaftlichen Transformationspfads hin zu einem klimaneutralen Deutschland im Jahr 2045.
Die Wirtschaftsleistung von Deutschland ist durch die Corona-Pandemie stark beeinträchtigt. Um die Wirtschaft zu beleben, einigten sich die Regierungsparteien am 3. Juni 2020 in ihrem Koalitionsausschuss auf ein "Konjunktur- und Krisenbewältigungspaket" sowie ein "Zukunftspaket" in Höhe von insgesamt 130 Milliarden Euro. Für 2020 und 2021 sind fast 60 Maßnahmen vorgesehen, die von steuerlichen Vergünstigungen bei der Mehrwertsteuer bis hin zu konkreten Investitionen in Zukunftstechnologien reichen. Mit Blick auf den Klimaschutz beinhaltet das Maßnahmenpaket der Großen Koalition zwar gute Ansätze und viele wichtige Impulse, die allerdings zu verpuffen drohen, wenn sie nicht durch eine konsequente und nachhaltig ausgerichtete Klimapolitik flankiert werden. Zudem fehlen für den Klimaschutz wichtige Bereiche, wie Investitionen in die Kreislaufwirtschaft. Außerdem werden Maßnahmen zur Steigerung der Energieeffizienz nur unzureichend berücksichtigt. Gerade in diesen Bereichen hätten sich konjunkturbelebende Effekte und Klimaschutz in idealer Form ergänzen können, kritisiert das Wuppertal Institut. Dieses Diskussionspapier reagiert auf die vorliegenden Vorschläge und fasst zusammen, welche Maßnahmen im Rahmen der jetzt anstehenden Umsetzungsphase nachgebessert werden sollten und wo Ergänzungen notwendig sind.
Welchen Effekt haben engagierte Klimaschutzmaßnahmen der Politik auf NRW's Schlüsselbranchen, wie Automotive, chemische Industrie, Finanzwirtschaft oder Energiewirtschaft? Eine Kurzstudie des Wuppertal Instituts untersucht, welche Chancen und Risiken aus dieser Praxis entstehen können. Außerdem werden Arbeitsplatz- und Wertschöpfungseffekte auch mit Blick auf entstehende Zukunftsmärkte analysiert.
The final report of the research project "Power Sector Decarbonisation: Metastudy" contains the various reports prepared by Öko-Institut and Wuppertal Institute during the course of the SEFEP funded project. A key objective of the project was to make a contribution to the debates within the European Union (EU) and Member States on the EU's Energy Roadmap 2050 publication, which was released in December 2011. This objective was achieved by systematically analysing and comparing recently published scenarios on the European electricity sector commissioned by a range of different stakeholders (environmental NGOs, industry and government agencies).
Transformative Innovationen : die Suche nach den wichtigsten Hebeln der Großen Transformation
(2021)
Der hier vorliegende Zukunftsimpuls soll den Grundgedanken der Transformativen Innovationen und ihre Notwendigkeit beschreiben sowie erste Kandidaten für solche Transformativen Innovationen aus diversen Arbeitsbereichen des Wuppertal Instituts vorstellen. Er dient vor allem als Einladung, gemeinsam mit dem Wuppertal Institut über solche Innovationen zu diskutieren, die irgendwo zwischen den großen Utopien und kleinen Nischenaktivitäten liegen. Denn es braucht nicht immer den ganz großen Wurf, um Veränderungen in Gang zu setzen.
Die grundsätzliche wirtschaftstheoretische Kritik am Erneuerbare-Energien-Gesetz greift zu kurz
(2010)
Der volkswirtschaftliche Nutzen der Förderung erneuerbarer Energien in Deutschland über das Erneuerbare-Energien-Gesetz (EEG) wurde wiederholt von verschiedenen Ökonomen und wirtschaftswissenschaftlichen Institutionen in Frage gestellt. Dabei wird zumeist als wesentliches Argument vorgebracht, dass das EEG unnötige Kosten für die Gesellschaft verursache und spätestens seit der EU-weiten Umsetzung eines Handels mit CO2-Emissionszertifikaten überflüssig sei. Eine genauere Betrachtung zeigt, dass diese Argumentation zu kurz greift, nicht zuletzt weil sie wesentliche ökonomische Zusammenhänge vernachlässigt.
Die Energiewende stellt einen ambitionierten und zugleich hochkomplexen Transformationsprozess dar. Der vorliegende Artikel stellt acht Thesen auf, die dabei helfen können, die Herausforderungen besser zu verstehen und Ansatzpunkte für zukünftiges Handeln zu identifizieren sowie Forschungsbedarf aufzuzeigen.
The need for an "Energy Roadmap 2050" triggered a multitude of studies that were conducted between 2009 and 2011, which again contained a multitude of decarbonisation scenarios, which achieve the EU's long-term emission mitigation target of reducing greenhouse gas emissions by at least 80% until 2050 (relative to 1990 emissions). The variety of important analysis is difficult to compare and utilize for specific and timely policy decisions. Thus the Smart Energy for Europe Platform (SEFEP) has commissioned a comparative study of relevant energy scenario studies for Europe. The findings of this comparative study are summarized here briefly.
We conduct a systematic, interdisciplinary review of empirical literature assessing evidence on induced innovation in energy and related technologies. We explore links between demand-drivers (both market-wide and targeted); indicators of innovation (principally, patents); and outcomes (cost reduction, efficiency, and multi-sector/macro consequences). We build on existing reviews in different fields and assess over 200 papers containing original data analysis. Papers linking drivers to patents, and indicators of cumulative capacity to cost reductions (experience curves), dominate the literature. The former does not directly link patents to outcomes; the latter does not directly test for the causal impact of on cost reductions). Diverse other literatures provide additional evidence concerning the links between deployment, innovation activities, and outcomes. We derive three main conclusions. (1) Demand-pull forces enhance patenting; econometric studies find positive impacts in industry, electricity and transport sectors in all but a few specific cases. This applies to all drivers - general energy prices, carbon prices, and targeted interventions that build markets. (2) Technology costs decline with cumulative investment for almost every technology studied across all time periods, when controlled for other factors. Numerous lines of evidence point to dominant causality from at-scale deployment (prior to self-sustaining diffusion) to cost reduction in this relationship. (3) Overall Innovation is cumulative, multi-faceted, and self-reinforcing in its direction (path-dependent). We conclude with brief observations on implications for modeling and policy. In interpreting these results, we suggest distinguishing the economics of active deployment, from more passive diffusion processes, and draw the following implications. There is a role for policy diversity and experimentation, with evaluation of potential gains from innovation in the broadest sense. Consequently, endogenising innovation in large-scale models is important for deriving policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation to the qualitative socio-technical transitions literatures could be a fruitful area for future research.
Der Klimawandel stellt uns vor die globale Herausforderung, auf fossile Energieträger zu verzichten. Die erfolgreiche Transformation des Energiesystems ist eine wesentliche Voraussetzung für eine vollständige Reduktion der Treibhausgase. Eine solche Transformation kann nur gelingen, wenn der fundamental neue Charakter des Systems erfasst und im abgeleiteten Rückschluss daraus der passende Pfad eingeschlagen wird. Im Kern lässt sich dieser neue Charakter als ein defossilisiertes, auf regenerativen Energien basierendes Energiesystem beschreiben.
Bis zum Jahr 2050 ist in Deutschland ein ausreichender Klima- und Ressourcenschutz technisch möglich und für die Volkswirtschaft vorteilhafter als eine Referenzentwicklung ("business as usual"): Das ist die Kernbotschaft, die von einer Vielzahl vorliegender Langfrist-Energieszenarien ausgeht. Auch das aktuelle Energiekonzept (September 2010) der Regierungskoalition aus CDU/CSU und FDP formuliert - gestützt auf Szenarien - quantifizierte Leitziele, die noch vor einigen Jahren als ökologische Utopien abgetan worden wären. Ist die Energiepolitik also auf einem guten Weg? Wie weit tragen die Techniken für Energieeffizienz und Erneuerbare? Ist effizient auch suffizient? Dieser Beitrag beantwortet diese Fragen mit drei Thesen. Erstens: Die Integration von Energieeffizienz und erneuerbaren Energien ist "die Brücke" zur Nachhaltigkeit. Zweitens: Die volkswirtschaftlich attraktiven Synergien zwischen Ressourcen- und Energieeffizienz müssen gehoben werden. Drittens: Eine Strategie für mehr Ressourceneffizienz muss in eine "Kultur der Genügsamkeit" eingebettet werden.
Carbon markets in a <2 °C world : will there be room for international carbon trading in 2050?
(2016)
This JIKO Policy Paper analyses a series of very ambitious mitigation scenarios and complements this analysis with a review of several sectoral technology roadmaps. The results are quite clear: there is no reason to believe that international carbon trading will become obsolete any time soon. Whether or not international carbon trading is to play a role in international climate protection efforts is in the end not a physical or economic question, but a political one.
The Deep Decarbonization Pathways Project (DDPP) is a collaborative global initiative led by IDDRI and SDSN that aims to demonstrate how individual countries can transition to a low-carbon economy preferably consistent with the internationally agreed target of limiting the increase in global temperature to less than 2°C. Achieving this target will require a profound transformation of energy systems by mid-century, a "deep decarbonization". The project comprises 16 research teams composed of leading institutions from the world's largest GHG emitting countries: Australia, Brazil, Canada, China, France, Germany India, Indonesia, Italy, Japan, Mexico, Russia, South Africa, South Korea, United Kingdom, and United States. Each team is exploring what is required to achieve this transformation in their own country's economy while taking into account socio-economic conditions, development aspirations, infrastructure stocks, natural resource endowments, and other relevant factors.
The DDPP country study for Germany explores what is required to achieve deep decarbonization in Germany. It has been conducted by the Wuppertal Institute for Climate, Environment and Energy, with the support of Stiftung Mercator. The study discusses how the German government's target of reducing domestic GHG emissions by 80 to 95% by 2050 (versus 1990) can be reached.
Roadmaps for India's energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges - such as a lack of technical potential assessments and necessary support infrastructure, and high costs - but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.
Einige Klimaneutralitätsszenarien für Deutschland nehmen an, dass zukünftig "unvermeidbares" CO2, z. B. aus der Zementproduktion, als Kohlenstoffquelle für die inländische Herstellung von Kraftstoffen oder chemischen Grundstoffen genutzt wird. In diesem Artikel wird dargelegt, warum eine solche CO2-Nutzung verglichen mit einem alternativen Pfad einer geologischen Speicherung des CO2 und einem gleichzeitigen Import "grüner" Kraft- und Grundstoffe zumindest aus energetischer Sicht nachteilig erscheint.
Germany and Japan have both gained substantial experience with hydrogen production and applications, albeit with focus on different sectors. They also share similar drivers for hydrogen development and, of course, similar technical and economic opportunities and challenges. However, there also are relevant differences in the policy priorities and approaches.
Notwithstanding differing emphases and patterns, the two countries share three main drivers for hydrogen development and deployment: climate mitigation and other environmental goals, energy supply diversification, and technological leadership. In this context, hydrogen has been identified by the German and the Japanese governments during the Energy Policy Dialogue as having potential for closer cooperation.
The authors of this study provide an overview of demand-side deployment by sector (residential, transport, industry, power generation and power-to-x) for both countries, as well as of their hydrogen policy debates, key institutions, R&D programs and demonstration projects. They also present a short survey on relevant international platforms and initiatives in which Japan and Germany participate.
On the basis of a meta-analysis of the role of hydrogen in 18 long-term energy system scenarios for Germany and 12 scenarios for Japan, this study draws conclusions on the possible role of hydrogen in the long term energy policy debates of both countries. Subsequently, the authors discuss sustainability criteria and certification schemes for clean hydrogen, compare the greenhouse gas intensity of different hydrogen supply chains and provide a data-based analysis to identify countries which could become important suppliers of clean hydrogen.
Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienzsteigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbsumfeld behalten?
Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen.
Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
Die in Paris Ende 2015 beschlossene Vereinbarung gibt das Ziel vor, die Erderwärmung bis 2100 auf deutlich unter 2 Grad Celsius zu begrenzen, möglichst aber auf unter 1,5 Grad Celsius. Die vorliegende Studie setzt sich mit der Frage von Fridays for Future Deutschland auseinander, welche Dimension von Veränderungen im deutschen Energiesystem erforderlich wären, um einen angemessenen Beitrag für das Erreichen der 1,5-Grad-Grenze leisten zu können. Nach Abschätzung des Weltklimarates, dem Intergovernmental Panel on Climate Change (IPCC), lassen sich mit dieser Temperaturgrenze die Risiken und Auswirkungen des Klimawandels gegenüber einer stärkeren Erderwärmung erheblich verringern.
Die Autorinnen und Autoren haben dabei den Budgetansatz des Sachverständigenrats für Umweltfragen (SRU) der Bundesregierung zugrunde gelegt. Um das 1,5-Grad-Ziel mit einer Wahrscheinlichkeit von 50 Prozent zu erreichen, ist das Restbudget an damit verträglichen Treibhausgasemissionen eng begrenzt. Für Deutschland bleibt gemäß des Sachverständigenrats für Umweltfragen ab dem Jahr 2020 noch ein Restbudget von 4,2 Gigatonnen CO2. Dabei geht der Sachverständigenrat von der Annahme aus, dass auf globaler Ebene jedem Menschen für die Zukunft ein gleiches Pro-Kopf-Emissionsrecht zugestanden werden soll. Mit dieser Klimaschutzvorgabe geht er deutlich weiter als die aktuellen politischen Vorgaben der Europäischen Union und der Bundesregierung, die diese für sich aus den Pariser Klimaschutzvereinbarungen ableiten.
Die vom SRU formulierte Zielmarke lässt sich einhalten, wenn das Energiesystem (Energiewirtschaft, Industrie, Verkehr und Gebäudewärme) bis zum Jahr 2035 CO2-neutral aufgestellt wird und die Emissionen insbesondere in den nächsten Jahren bereits überproportional stark gesenkt werden können.
Die vorliegende Studie untersucht die technische und in gewissem Maße auch die ökonomische Machbarkeit einer Transformation zur CO2-Neutralität bis 2035. Ob sich dieses Ziel jedoch tatsächlich realisieren lässt, hängt auch maßgeblich von der gesellschaftlichen Bereitschaft und einem massiven politischen Fokus auf die notwendige Transformation ab. Die Studie gibt somit Aufschluss darüber, inwiefern es grundlegende technologische und wirtschaftliche Hindernisse für die CO2-Neutralität 2035 gibt; nicht jedoch ob die Umsetzung realpolitisch tatsächlich gelingen kann bzw. was dafür im Einzelnen getan werden muss. Neben den technischen und ökonomischen Herausforderungen einer Transformation hin zu CO2-Neutralität bestehen zentrale Herausforderungen auch in institutioneller und kultureller Hinsicht, zum Beispiel bei Themen wie der Akzeptanz für einen starken Ausbau von Erneuerbaren-Energien-Anlagen und von Energieinfrastrukturen oder hinsichtlich der Notwendigkeit eines deutlich veränderten Verkehrsverhaltens.
The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's "Energy Technology Perspectives" baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed.
Wind energy that can neither be fed into the grid nor be used regionally must be curtailed. This paper proposes different options to deal with such surplus wind energy amounts in a time horizon until 2020. It assesses their ability to handle the surplus energy in a sustainable way using a multi criteria analysis. The paper bases on a study that was prepared for the Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer Protection of North Rhine-Westphalia between 2010 and 2012.
Zielsetzung des Forschungsprojektes war es, Klimaschutzszenarien für Deutschland zu entwickeln, die hinsichtlich ihres klimapolitischen Ziels, d.h. ihres langfristigen Emissionsminderungsbeitrags, im Wesentlichen gleich sind, die aber zum Teil auf unterschiedliche Optionen zur Reduktion der energiebedingten CO2-Emissionen setzen. Diese Klimaschutzszenarien wurden hinsichtlich sozioökonomischer und ökologischer Kriterien evaluiert und miteinander verglichen.
Development of alternative energy and climate scenarios for the Czech Republic : final report
(2009)
Die atompolitische Wende der Bundesregierung hatte zahlreichen Spekulationen und Befürchtungen Raum gegeben. Es wurde gemutmaßt, dass Deutschland zum Nettostromimporteur werden könnte, sollten die Kraftwerke (wie im Sommer 2011 beschlossen) dauerhaft außer Betrieb bleiben. Darüber hinaus nahm man an, dass die in Deutschland entfallende Stromerzeugung durch Kohlekraftwerke oder durch Importe aus französischen oder tschechischen Atomkraftwerken ersetzt würde und dass Strompreise sowie CO2-Emissionen deutlich ansteigen würden. Inzwischen liegen vorläufige Energiebilanzen und Marktdaten für das Jahr 2011 vor, die viele dieser Befürchtungen widerlegen. Der hier vorgenommene Ausblick auf die mögliche Entwicklung in den kommenden Jahren zeigt zudem, dass die Bilanz von 2011 keine Momentaufnahme sein muss, sondern dass der gegenüber 2010 wegfallende Kernenergiestrom - bilanziell gesehen - voraussichtlich bereits ab 2013 allein durch eine erhöhte regenerative Stromerzeugung kompensiert werden kann.
Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law - passed in parliament by a large majority - that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs.
The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO2-emissions and a need for Germany to become a net importer of electricity.
Now - a little more than a year after the phase-out law entered into force - this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation.
The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011.
If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable to gradually reduce fossil fuel generated electricity. Whether the reduction in fossil fuel use will be sufficient to adequately contribute to national greenhouse gas mitigation targets significantly depends on an active policy to promote electricity savings, continuous efforts to increase the use of renewables and a higher share of natural gas (preferably used in combined heat and power plants) in fossil fuel power generation.
Several low-carbon energy roadmaps and scenarios have recently been published by the European Commission and the International Energy Agency (IEA) as well as by various stakeholders such as Eurelectric, ECF and Greenpeace. Discussions of these studies mainly focus on technology options available on the electricity supply side and mostly omit the significant challenges that all of the scenarios impose on the energy demand side.
A comparison of 5 decarbonisation scenarios from 4 of the most relevant recent scenario studies for the EU shows that all of them imply significant efficiency improvements in traditional appliances, usually well above levels historically observed over longer periods of time. At the same time they assume substantial electrification of transportation and heating. The scenarios suggest that both of these challenges need to be tackled successfully for decarbonising the energy system.
With shares of renewable electricity reaching at least 60 % of supply in 2050 in almost all of the decarbonisation scenarios, the adaptation of demand to variable supply becomes increasingly important. This aspect of demand side management should therefore be part of any policy mix aiming for a low-carbon power system.
Based on a quantitative analysis of 5 decarbonisation scenarios and a comparison with historical evidence we derive the (implicit) new challenges posed by the current low-carbon roadmaps and develop recommendations for energy policy on the electricity demand side.
The present brief analysis provides an overview about costs and benefits of the promotion of renewable energies in the framework of the EEG. We describe the development of the EEG apportionment in recent years, and its possible development in coming years. Furthermore, the analysis examines the merits of some of the most commonly expressed points of criticism against the EEG. Finally, we examine the extent to which the calculations regarding the costs of the expansion of photovoltaics, which are often raised in the media, are correct, and how they are to be interpreted.
Die vorliegende Kurzanalyse gibt einen Überblick über die Kosten und Nutzen der Förderung erneuerbarer Energien im Rahmen des EEG. Dabei wird unter anderem auf die Entwicklung der EEG-Umlage in den letzten Jahren und ihre mögliche Entwicklung in den kommenden Jahren eingegangen. Außerdem setzt sich die Analyse mit einigen grundsätzlichen Kritikpunkten am EEG auseinander. Abschließend wird geprüft, inwieweit häufig durch die Medien aufgegriffene Berechnungen zu den Kosten des Ausbaus der Fotovoltaik zutreffend sind und wie sie zu interpretieren sind.
The EU aims to become the first climate neutral continent. To achieve this goal, the industry sector needs to reduce its GHG emissions to net zero or at least close to net zero. This is a particularly challenging task due to the high energy demand especially of primary materials production and the little potential to reduce this energy intensity when switching to other production processes based on electricity or hydrogen. In order to identify robust strategies for achieving a net-zero-compatible industry sector, the paper at hand analyses the transformation of the industry sector as described by a number of recent climate neutrality scenarios for Germany. Apart from overall industry, a focus is set on the sectors of steel, chemicals and cement. The analysed scenarios show very deep GHG emission reductions in industry and they appear to be techno-economically feasible by the mid of the century, without relying on offsets or on shifts from domestic production to imports. The scenarios agree on a suite of core strategies to achieve this, such as direct and indirect electrification, energy efficiency and recycling as well as new technological routes in steel making and cement. The scenarios differ, however, regarding the future mix of electricity, hydrogen and biomass and regarding the future relevance of domestic production of basic chemicals.
Unter den Stichworten "Sektorenkopplung" und "Power-to-X" werden derzeit viele Möglichkeiten der direkten und indirekten Elektrifizierung großer Teile der Endenergienachfrage intensiv diskutiert. In diesem Zusammenhang hat die Diskussion um Wasserstoff als Endenergieträger sowie als Feedstock für die Herstellung von synthetischen Kraftstoffen und chemischen Grundstoffen zuletzt stark an Bedeutung gewonnen. Insbesondere der klimaneutrale Umbau der Grundstoffindustrien und hier vor allem der Grundstoffchemie und der Stahlindustrie würde bedeutende Mengen an grünem Wasserstoff benötigen, die räumlich stark auf die großen Industriekerne fokussiert wären. Ein zeitnaher Einstieg in die Schaffung entsprechender Erzeugungskapazitäten und Infrastrukturen könnte dazu führen, dass Wasserstoff - neben erneuerbaren Energien und Energieeffizienz - zum dritten Standbein der Energiewende avanciert.
International consensus is growing that a transition towards a low carbon society (LCS) is needed over the next 40 years. The G8, the Major Economies Forum on Energy and Climate, as well as the Ad Hoc Working Group on Long-term Cooperative Action under the United Nations Framework Convention on Climate Change, have concluded that states should prepare their own Low-emission Plans or Low-emission Development Plans and such plans are in development in an increasing number of countries.
An analysis of recent long-term low emission scenarios for Germany shows that all scenarios rely heavily on a massive scale up of energy efficiency improvements based on past trends. However, in spite of the high potential that scenario developers assign to this strategy, huge uncertainty still exists in respect of where the efficiency potentials really lie, how and if they can be achieved and how much their successful implementation depends on more fundamental changes towards a more sustainable society (e.g. behavioural changes).
In order to come to a better understanding of this issue we specifically examine the potential for energy efficiency in relation to particular demand sectors. Our comparative analysis shows that despite general agreement about the high importance of energy efficiency (EE), the perception on where and how to achieve it differ between the analysed scenarios. It also shows that the close nexus between energy efficiency and non-technical behavioural aspects is still little understood. This leads us to the conclusion that in order to support energy policy decisions more research should be done on energy efficiency potential. A better understanding of its potential would help energy efficiency to fulfil its role in the transition towards a LCS.
Following the decisions of the Paris climate conference at the end of 2015 as well as similar announcements e.g. from the G7 in Elmau (Germany) in the summer of 2015, long-term strategies aiming at (almost) full decarbonisation of the energy systems increasingly move into the focus of climate and energy policy. Deep decarbonisation obviously requires a complete switch of energy supply towards zero GHG emission sources, such as renewable energy. A large number of both global as well as national climate change mitigation scenarios emphasize that energy efficiency will likewise play a key role in achieving deep decarbonization. However, the interdependencies between a transformation of energy supply on the one hand and the role of and prospects for energy efficiency on the other hand are rarely explored in detail.
This article explores these interdependencies based on a scenario for Germany that describes a future energy system relying entirely on renewable energy sources. Our analysis emphasizes that generally, considerable energy efficiency improvements on the demand side are required in order to have a realistic chance of transforming the German energy system towards 100 % renewables. Efficiency improvements are especially important if energy demand sectors will continue to require large amounts of liquid and gaseous fuels, as the production of these fuels are associated with considerable energy losses in a 100 % renewables future. Energy efficiency on the supply side will therefore differ considerably depending on how strongly the use of liquid and gaseous fuels in the various demand sectors can be substituted through the direct use of electricity. Apart from a general discussion of the role of energy efficiency in a 100 % renewable future, we also look at the role of and prospects for energy efficiency in each individual demand sector.
In this paper a new method for the evaluation and comparison of potential future electricity systems is presented. The German electricity system in the year 2050 is used as an example. Based on a comprehensive scenario analysis defining a corridor for possible shares of fluctuating renewable energy sources (FRES) residual loads are calculated in a unified manner. The share of electricity from PV and wind power plants in Germany in the year 2050 is in a range of 42-122% and the load demand has a bandwidth of around 460-750 TWh. The residual loads are input for an algorithm that defines a supplementary mix of technologies providing flexibility to the system. The overall system layout guarantees the balance of generation and demand at all times. Due to the fact that the same method for residual load calculation and mixture of technologies is applied for all scenarios, a good comparability is guaranteed and we are able to identify key characteristics for future developments. The unique feature of the new algorithms presented here is the very fast calculation for a year-long simulation with hourly or shorter time steps taking into account the state of charge or availability of all storage and flexibility technologies. This allows an analysis of many different scenarios on a macro-economic level, variation of input parameters can easily be done, and extensive sensitivity analysis is possible. Furthermore different shares of FRES, CO2-emission targets, interest rates or social acceptance of certain technologies can be included. The capabilities of the method are demonstrated by an analysis of potential German power system layouts with a base scenario of 90% CO2-reduction target compared to 1990 and by the identification of different options for a power sector with a high degree of decarbonisation. The approach also aims at a very high level of transparency both regarding the algorithms and regarding the input parameters of the different technologies taken into account. Therefore this paper also gives a comprehensive and complete overview on the technology parameters used. The forecast on all technologies for the year 2050 regarding technical and economic parameters was made in a comprehensive consultation process with more than 100 experts representing academia and industry working on all different technologies. An extensive analysis of options for the design of potential German energy supply systems in 2050 based on the presented methodology will be published in a follow-up paper.
Contrary to "static" pathways that are defined once for all, this article deals with the need for policy makers to adopt a dynamic adaptive policy pathway for managing decarbonization over the period of implementation. When choosing a pathway as the most desirable option, it is important to keep in mind that each decarbonization option relies on the implementation of specific policies and instruments. Given structural, effectiveness, and timing uncertainties specific to each policy option, they may fail in delivering the expected outcomes in time. The possibility of diverging from an initial decarbonization trajectory to another one without incurring excessive costs should therefore be a strategic element in the design of an appropriate decarbonization strategy. The article relies on initial experiences in France and Germany on decarbonization planning and implementation to define elements for managing dynamic adjustment issues. Such an adaptive pathway strategy should combine long-lived incentives, like a pre-announced escalating carbon price, to form consistent expectations, as well as adaptive policies to improve overall robustness and resilience. We sketch key elements of a monitoring process based on an ex ante definition of leading indicators that should be assessed regularly and combined with signposts and trigger values at the subsector level.
Relevante Fragen rund um die Möglichkeiten und Erfordernisse der Reduzierung und Beendigung der Kohleverstromung werden seit mehreren Jahren diskutiert. Dabei sind eine Fülle von Strategien, Analysen und Argumenten entwickelt worden, wie die Reduzierung und Beendigung der energetischen Nutzung von Kohle auf der Zeitachse umgesetzt und strukturpolitisch flankiert werden könnte. Der vorliegende "Kohle-Reader" greift die vorliegenden Analysen auf und gibt einen Überblick über den Diskussionsstand. Er soll über Fakten und Zusammenhänge informieren, das Für und Wider für einzelne Handlungsoptionen benennen und dazu den jeweiligen wissenschaftlichen Hintergrund aufzeigen. Er hat den Anspruch wissenschaftlich-neutral zu sein und er soll in Sprache und Darstellung prägnant und für die nicht zuvor im Detail mit den Themen befassten Leserinnen und Leser gut verständlich sein, ohne unzulässig zu verkürzen oder zuzuspitzen.
Phasing out coal in the German energy sector : interdependencies, challenges and potential solutions
(2019)
Relevant aspects of the options and requirements for reducing and phasing out coal-fired power generation have been under debate for several years. This process has produced a range of strategies, analyses and arguments, outlining how coal use in the energy sector could be reduced and phased out in the planned time frame, and determining structural policy measures suitable to support this. This Coal Report studies the existing analyses and provides an overview of the state of debate. It is intended to provide information on facts and contexts, present the advantages and disadvantages of individual courses of action, and reveal the respective scientific backgrounds. It strives to take a scientific and independent approach, and present facts in concise language, making it easy to follow for readers who are not experts in the field, without excessive abridgements or provocative statements.
The experience curve theory assumes that technology costs decline as experience of a technology is gained through production and use. This article reviews the literature on the experience curve theory and its empirical evidence in the field of electricity generation technologies. Differences in the characteristics of experience curves found in the literature are systematically presented and the limitations of the experience curve theory, as well as its use in energy models, are discussed. The article finds that for some electricity generation technologies, especially small-scale modular technologies, there has been a remarkably strong (negative) relationship between experience and cost for several decades. Conversely, for other technologies, especially large-scale and highly complex technologies, the experience curve does not appear to be a useful tool for explaining cost changes over time. The literature review suggests that when analysing past cost developments and projecting future cost developments, researchers should be aware that factors other than experience may have significant influence. It may be worthwhile trying to incorporate some of these additional factors into energy system models, although considerable uncertainties remain in quantifying the relevance of some of these factors.
As part of this dissertation, a categorisation of the social costs of electricity supply is suggested. The following three main cost categories are differentiated: plant-level costs, system costs and external costs. Different types of costs are allocated to these categories and are examined and quantified (to the extent possible) for several power generation technologies. The limits of monetizing certain types of costs are also discussed. In a further step, and based on a large number of empirical studies, individual factors that have had a significant influence on the development of plant-level costs in the past, are identified and categorized. Finally, based on an online survey conducted among energy modellers, the dissertation examines to what extent the identified relevant types of costs and cost-influencing factors are taken into account in different types of energy models.
Various electricity generation technologies using different primary energy sources are available. Many published studies compare the costs of these technologies. However, most of those studies only consider plant-level costs and do not fully take into account additional costs that societies may face in using these technologies. This article reviews the literature on the costs of electricity generation technologies, aiming to determine which types of costs are relevant from a societal point of view when comparing generation technologies. The paper categorises the relevant types of costs, differentiating between plant-level, system and external costs as the main categories. It discusses the relevance of each type of cost for each generation technology. The findings suggest that several low-carbon electricity generation technologies exhibit lower social costs per kWh than the currently dominant technologies using fossil fuels. More generally, the findings emphasise the importance of taking not only plant-level costs, but also system and external costs, into account when comparing electricity generation technologies from a societal point of view. The article intends to inform both policymakers and energy system modellers, the latter who may strive to include all relevant types of costs in their models.
This article reviews the literature on the past cost dynamics of various renewable, fossil fuel and nuclear electricity generation technologies. It identifies 10 different factors which have played key roles in influencing past cost developments according to the literature. These 10 factors are: deployment-induced learning, research, development and demonstration (RD&D)-induced learning, knowledge spillovers from other technologies, upsizing, economies of manufacturing scale, economies of project scale, changes in material and labour costs, changes in fuel costs, regulatory changes, and limits to the availability of suitable sites. The article summarises the relevant literature findings for each of these 10 factors and provides an overview indicating which factors have impacted on which generation technologies. The article also discusses the insights gained from the review for a better understanding of possible future cost developments of electricity generation technologies. Finally, future research needs, which may support a better understanding of past and future cost developments, are identified.
Im Auftrag der Fraktion BÜNDNIS 90/DIE GRÜNEN im Bayerischen Landtag haben Forschende des Wuppertal Instituts wissenschaftlich überprüft, wie viele Treibhausgas-Emissionen im Jahr 2030 bestimmte landespolitische Klimaschutz-Maßnahmen potenziell einsparen können. Die vorliegende Studie schätzt dabei sowohl die Effekte der Maßnahmen auf die insgesamt verursachten Treibhausgas-Emissionen (Verursacherprinzip) als auch auf die in Bayern selbst statistisch erfassten Emissionen (Quellenprinzip) ab.
Die Maßnahmen adressieren die folgenden fünf Bereiche: 1) Gebäude und Verkehrsmittel im Besitz der öffentlichen Hand. 2) Ausbau der Windenergie und Photovoltaik. 3) Energieeffizienz im Gebäudesektor. 4) Energieeffizienz und Verkehrsverlagerung im Transportsektor. 5) Landwirtschaft und Landnutzung.
Zwei Beispiele der untersuchten Maßnahmen sind Verbesserungen der Rahmenbedingungen für den Bau neuer Windenergieanlagen und eine stärkere Nutzung des industriellen Abwärmepotenzials.
Die vorliegende Darstellung vergleicht fünf ausgewählte aktuelle Klimaschutzszenarien für Deutschland in Hinblick auf zentrale Entwicklungen im Energiesystem bis Mitte des Jahrhunderts. Die fünf Szenarien sind zwischen April und Oktober 2021 erschienen und beschreiben unterschiedliche Pfade, wie Klimaneutralität in Deutschland bis zum Jahr 2045 bzw. 2050 erreicht werden könnte. Die Szenarien wurden von verschiedenen Organisationen in Auftrag gegeben und von unterschiedlichen wissenschaftlichen Instituten bzw. Beratungsunternehmen erarbeitet.
Im vorliegenden Vergleich werden verschiedene Kenngrößen des Energiesystems auf Energieangebots- sowie Energienachfrageseite betrachtet. Die Gegenüberstellung der jeweiligen Entwicklungen in den Szenarien soll aufzeigen, in welchen Bereichen die Studien auf dem Weg zur Klimaneutralität ähnliche Entwicklungen vorsehen und in welchen Bereichen es derzeit noch deutlich abweichende Vorstellungen über die genaue Ausgestaltung der Energiesystemtransformation gibt.
This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios.
The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies.
The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated.
The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
Das Ziel der Klimaneutralität ist eine große Herausforderung, insbesondere für die Industrie. Dieser Artikel analysiert und vergleicht verschiedene Strategien zur Transformation des Industriesektors, wie sie in aktuellen deutschen, europäischen und globalen Klimaschutzszenarien beschrieben werden. Zunächst werden zehn Schlüsselstrategien für weitgehende Treibhausgasemissionsreduktionen im Industriesektor identifiziert. Anschließend wird in einer Szenario-Metaanalyse untersucht, in welchem Maße verschiedene Szenarien jeweils auf die einzelnen Strategien setzen. Dabei zeigt sich, dass es zwischen den Szenarien teilweise erhebliche Unterschiede bezüglich der verfolgten Strategien gibt.
Die sog. Klimapfadestudie und ihre Szenarien haben in der Öffentlichkeit ein breites Echo gefunden, nicht zuletzt weil der BDI damit erstmals eine eigene detaillierte Untersuchung der Machbarkeit der deutschen Klimaschutzziele vorlegt und offensiv in die Diskussionen um die langfristige Transformation des Energiesystems einsteigt. Während der BDI in der Mai-Ausgabe der "et" bereits wesentliche Ergebnisse vorgestellt hat, werden die Szenarien der Studie in diesem Artikel mit anderen vorliegenden Klimaschutzszenarien verglichen.
Die vorliegende Studie im Auftrag des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes NRW liefert zunächst in Kapitel 2 einen Überblick über wichtige grundsätzliche Zusammenhänge, die für eine Diskussion der Strompreiseffekte eines beschleunigten Ausstiegs zu berücksichtigen sind und stellt etwaige Preiswirkungen in den größeren Zusammenhang weiterer, ggf. auch positiver ökonomischer Wirkungen einer beschleunigten Energiewende. In Kapitel 3 werden anschließend die bisher öffentlich verfügbaren Untersuchungen und wissenschaftlichen Stellungnahmen zu der Frage der zu erwartenden Strompreiseffekte einzeln vorgestellt und bewertet. Das Fazit in Kapitel 4 fasst schließlich den aus den verschiedenen Studien und Stellungnahmen abgeleiteten aktuellen Wissensstand zur Untersuchungsfrage zusammen und geht kurz auf mögliche politische Maßnahmen zur Begrenzung der Strompreiseffekte sowie der damit potenziell verbundenen negativen Auswirkungen ein.
Die Erkenntnisse der Klimaforschung sind eindeutig: Um das im Pariser Klimaabkommen vereinbarte Ziel der Begrenzung der Erderwärmung auf "deutlich unter 2 °C" noch einhalten zu können, müssen die globalen Treibhausgasemissionen umgehend ihren Scheitelpunkt erreichen und anschließend kontinuierlich und steil zurückgehen. Dies gilt umso mehr für die ebenfalls im Pariser Klimaabkommen vereinbarte Absicht, die Erwärmung möglichst sogar unter 1,5 °C zu halten. Durch eine entsprechende Begrenzung der Erderwärmung kann nach aktuellem Wissensstand die Gefahr des Auslösens gefährlicher Kipppunkte und einer sich selbst verstärkenden Erwärmung deutlich vermindert werden.
To combat climate change, it is anticipated that in the coming years countries around the world will adopt more stringent policies to reduce greenhouse gas emissions and increase the use of clean energy sources. These policies will also affect the industry sector, which means that industrial production is likely to progressively shift from CO2-emitting fossil fuel sources to renewable energy sources. As a result, a region's renewable energy resources could become an increasingly important factor in determining where energy-intensive industries locate their production. We refer to this pull factor as the "renewables pull" effect. Renewables pull could lead to the relocation of some industrial production as a consequence of regional differences in the marginal cost of renewable energy sources. In this paper, we introduce the concept of renewables pull and explain why its importance is likely to increase in the future. Using the examples of direct reduced iron (DRI) and ammonia production, we find that the future costs of climate-neutral production of certain products is likely to vary considerably between regions with different renewable energy resources. However, we also identify the fact that many other factors in addition to energy costs determine the decisions that companies make in term of location, leaving room for further research to better understand the future relevance of renewables pull.
In recent years, a number of energy scenario studies which aim to advise policy makers on appropriate energy policy measures have been developed. These studies highlight changes required to achieve a future energy system that is in line with public policy goals such as reduced greenhouse gas emissions and an affordable energy supply. We argue that behavioural changes towards energy-sufficient lifestyles have considerable potential to contribute to public policy goals and may even be indispensable for achieving some of these goals. This potential should, therefore, be reflected in scenario studies aiming to provide comprehensive advice to policy makers. We analyse the role that energy-sufficient lifestyles play in prominent recent global energy scenario studies and find that these studies largely ignore the potential of possible behavioural changes towards energy-sufficient lifestyles. We also describe how such changes have been considered in several other scenario studies, in order to derive recommendations for the future development of global energy scenarios. We conclude that the inclusion of lifestyle changes in energy scenarios is both possible and useful. Based on our findings, we present some general advice for energy scenario developers on how to better integrate sufficiency into future energy scenario studies in a quantitative manner.
Die vom Wuppertal Institut für Fridays for Future durchgeführten Analysen legen nahe, dass das Erreichen von CO2-Neutralität bis 2035 aus technischer und ökonomischer Sicht zwar extrem anspruchsvoll wäre, grundsätzlich aber möglich ist. Diese Zielsetzung wäre in allen Sektoren mit großen Herausforderungen verbunden und würde beispiellose politische Anstrengungen erfordern.
Aufgrund der perspektivisch insbesondere mit dem benötigten weiteren Ausbau der erneuerbaren Energien verbundenen weiter zunehmenden Auswirkungen der Energiesystemtransformation auf Landschaft und Ökosysteme erscheint es angemessen, dass Politik und Gesellschaft die Naturverträglichkeit der Energiewende bzw. ihrer konkreten Ausgestaltung stärker in den Blick nehmen als bisher. Denn eine angemessene Berücksichtigung und darauf aufbauende weitest mögliche Minderung der negativen Einflüsse von Energiewende-Maßnahmen auf die Natur ist aus verschiedenen Gründen von Bedeutung: Zum einen ist die gesellschaftliche Akzeptanz für das Gelingen der Energiewende entscheidend und eine weitgehend naturverträgliche Ausgestaltung der Energiewende kann diese Akzeptanz befördern. Zum anderen sind intakte Ökosysteme für das menschliche Wohlergehen von hoher Bedeutung und es kann darüberhinaus argumentiert werden, dass ihnen unabhängig vom Wert für den Menschen auch ein intrinsischer Wert zugesprochen werden sollte. (Zusätzliche) Ökosystemstörungen sollten folglich so weit wie möglich vermieden werden.
Vor diesem Hintergrund hat der Naturschutzbund Deutschland e.V. das Wuppertal Institut beauftragt, in dem vorliegenden Bericht mögliche Maßnahmen zu identifizieren und zu beschreiben, die sowohl wesentliche Beiträge zur Erreichung der Ziele der Energiewende leisten können, deren Umsetzung gleichzeitig aber nach derzeitigem Wissensstand keine oder nur geringe negative Auswirkungen auf die Natur hätte. Der Bericht soll dabei helfen, die Aufmerksamkeit auf gegenwärtig nicht ausgeschöpfte, von der Energiepolitik und auch von vielen vorliegenden Energiewende-Studien nicht oder wenig beachtete aber wahrscheinlich naturschutzgerechtere Klimaschutzoptionen zu richten und diese Optionen besser zu verstehen.
The EU has set itself ambitious targets with regards to a significant reduction of its greenhouse gas emissions and has presented roadmaps depicting an overall decarbonisation of its economy by the middle of the century. In this context European policymakers and stakeholders are currently discussing the targets and the level of ambition of the 2030 climate and energy policy framework. The Commission is expected to present its own vision for the further development of the energy and climate policy framework in its White Paper "For a 2030 climate and energy policy framework". At this decisive point in the political debate the Wuppertal Institute presents a brief working paper that analyses some of the analytical work - particularly the underlying energy and GHG emission scenarios - behind the Commission's proposals to be presented in the forthcoming White Paper.
Das Ziel der Klimaneutralität bis zum Jahr 2045 stellt nicht zuletzt den Industriesektor vor erhebliche Herausforderungen. Für diesen Sektor werden teilweise sehr unterschiedliche Entwicklungspfade in Richtung Klimaneutralität beschrieben, wie ein Blick in verschiedene aktuelle Szenariostudien zeigt. Dennoch gibt es auch im Industriesektor bestimmte Emissionsminderungsstrategien, die in allen vorliegenden Szenarien als unverzichtbar angesehen werden.
Der Diskurs um die Transformation des Energiesystems ist in den vergangenen Jahren vermehrt über wissenschaftlich fundierte Szenarien geführt worden, die aus verschiedenen gesellschaftlichen Perspektiven in Auftrag gegeben wurden. Der Vergleich von vier im Jahr 2021 erschienenen Studien zeigt auf, wo weitgehende Einigkeit über die erforderlichen Strategien zur Erreichung der Klimaneutralität bis 2045 besteht, und wo die größten Differenzen liegen.
Mit dem Kernenergieunfall im japanischen Fukushima im März 2011 ist die Diskussion über das Für und Wider der Nutzung der Kernenergie für die Stromerzeugung in Deutschland neu entbrannt. Die Frage nach den Auswirkungen eines beschleunigten Ausstiegs aus der Kernenergienutzung auf die Entwicklung der Strompreise in Deutschland bildete in den vergangenen Monaten einen Schwerpunkt der öffentlichen Diskussion. Allerdings halten nicht alle Aussagen, die hierzu veröffentlicht wurden, einer kritischen Analyse stand, was zum Teil auch an zugrunde liegenden politischen Motiven gelegen haben mag. Eine Untersuchung fundierter Studien und ausgewählter Stellungnahmen zeigt, dass sich die befürchteten kurzfristigen Preiseffekte in ü̈berschaubaren Grenzen halten werden.
In der vorliegenden Studie steht die Forschungsfrage im Mittelpunkt, ob ein vollständig auf erneuerbaren Energien beruhendes Stromsystem mit hohen Importanteilen von rund 10 bis 20 % nach heutigem Stand des Wissens als technisch-ökologisch realisierbar angesehen werden kann. Als Grundlage für die Untersuchung wird in erster Linie auf eine Reihe von Szenariostudien zurückgegriffen, die ein weitgehend treibhausgasemissionsfreies, zu 90 bis 100 % auf regenerativer Erzeugung basierendes und von hohen Stromimportanteilen gekennzeichnetes Stromsystem mit dem Zeithorizont 2050 modellieren und beschreiben. Dabei werden analog zu Szenarien für Deutschland auch vorliegende Szenarien für Europa in den Blick genommen, die für den europäischen Kontinent wesentliche Nettostromimporte aus Nordafrika vorsehen.
On behalf of the Port of Rotterdam Authority, the Wuppertal Institute developed three possible pathways for a decarbonised port of Rotterdam until 2050. The port area is home to about 80 per cent of the Netherlands' petrochemical industry and significant power plant capacities. Consequently, the port of Rotterdam has the potential of being an international leader for the global energy transition, playing an important role when it comes to reducing CO2 emissions in order to deliver on the EU's long-term climate goals.
The three decarbonisation scenarios all built on the increasing use of renewables (wind and solar power) and the adoption of the best available technologies (efficiency). The analysis focuses on power plants, refineries and the chemical industry, which together are responsible for more than 90 per cent of the port area's current CO2 emissions.
The decarbonisation scenarios describe how CO2 emissions could be reduced by 75 to 98 per cent in 2050 (compared to 2015). Depending on the scenario, different mitigation strategies are relied upon, including electrification, closure of carbon cycles or carbon capture and storage (CCS). The study includes recommendations for local companies, the Port Authority as well as policy makers. In addition, the study includes a reference scenario, which makes it clear that a "business as usual" mentality will fall well short of contributing adequately to the EU's long-term climate goals.
Damit sich die weltweit zunehmend ambitionierten Klimaschutzziele erreichen lassen, müssen auch im Industriesektor weitgehende Emissionsreduktionen innerhalb weniger Jahrzehnte realisiert werden. Expertinnen und Experten sind sich einig, dass dies nicht ohne den Umstieg von fossilen auf erneuerbare Energieträger und Rohmaterialien - sogenannte Feedstocks - umsetzbar ist. Im Zuge der verstärkten Nutzung dieser grünen Energieträger ist denkbar, dass sich deren Verfügbarkeit und Kosten zu immer wichtigeren Standortfaktoren für die Produktion industrieller Güter entwickeln werden. Dies könnte dazu führen, dass zukünftig Standorte mit kostengünstiger Verfügbarkeit von erneuerbaren Energien attraktiver gegenüber anderen Standorten werden und es dann zu Standortverlagerungen kommt - insbesondere im Bereich der energieintensiven Industrie.
In dem vorliegenden Artikel greifen die Autoren diese möglichen Verlagerungen industrieller Produktion auf. In diesem Zusammenhang führen sie auch den Begriff "Renewables Pull" ein. Die in bestimmten Regionen der Welt kostengünstig und in großen Mengen verfügbaren erneuerbaren Energien könnten nach Ansicht der Autoren künftig eine Sogwirkung auslösen und bestimmte Teile der industriellen Produktion anziehen - auch Pull-Effekt genannt.
This report was prepared by the Wuppertal Institute in cooperation with the German Economic Institute as part of the SCI4climate.NRW project. The report aims to shed light on the possible phenomenon that the availability and costs of "green" energy sources may become a relevant location factor for basic materials produced in a climate-neutral manner in the future.
For this purpose, we introduce the term "Renewables Pull". We define Renewables Pull as the initially hypothetical phenomenon of a shift of industrial production from one region to another as a result of different marginal costs of renewable energies (or of secondary energy sources or feedstocks based on renewable energies).
Shifts in industrial production in the sense of Renewables Pull can in principle be caused by differences in the stringency of climate policies in different countries, as in the case of Carbon Leakage. Unlike Carbon Leakage, however, Renewables Pull can also occur if similarly ambitious climate policies are implemented in different countries. This is because Renewables Pull is primarily determined by differences in the costs and availability of renewable energies. In addition, Renewables Pull can also be triggered by cost reductions of renewable energies and by changing preferences on the demand side towards climate-friendly products. Another important difference to Carbon Leakage is that the Renewables Pull effect does not necessarily counteract climate policy.
Similar to Carbon Leakage, it is to be expected that Renewables Pull could become relevant primarily for very energy-intensive products in basic materials industries. In these sectors (e.g. in the steel or chemical industry), there is also the possibility that relocations of specific energy-intensive parts of the production process could trigger domino effects. As a result, large parts of the value chains previously existing in a country or region could also be subjected to an (indirect) Renewables Pull effect.
For the federal state of NRW, in which the basic materials industry plays an important role, the possible emergence of Renewables Pull is associated with significant challenges as climate policy in Germany, the EU and also worldwide is expected to become more ambitious in the future.
This report aims to enable and initiate a deeper analysis of the potential future developments and challenges associated with the Renewables Pull effect. Thus, in the final chapter of the report, several research questions are formulated that can be answered in the further course of the SCI4climate.NRW project as well as in other research projects.
The Port of Rotterdam is an important industrial cluster mainly comprising of oil refining, chemical manufacturing and power and steam generation. In 2015, the area accounted for 18 % of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the port's economy is heavily exposed to future global and EU decarbonization policies, as the bulk of its activities focuses on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority, our paper explores possible pathways of how the industrial cluster can keep its strong market position in Europe and still reduce its CO2 emissions by 98 % by 2050. The "Biomass and CCS" scenario assumes that large amounts of biomass can be supplied sustainably and will be used in the port for power generation as well as for feedstock for refineries and the chemical industry. Fischer-Tropsch fuel generation plays an important role in this scenario, allowing the port to become a key cluster for the production of synthetic fuels and feedstocks in Western Europe. The "Closed Carbon Cycle" scenario assumes that renewables-based electricity will be used at the port to supply heat and hydrogen for the synthetic generation of feedstock for the chemical industry. The carbon required for the chemicals will stem from recycled waste. Technologies particularly needed in this scenario are water electrolysis and gasification or pyrolysis to capture carbon from waste, as well as technologies for the production of base chemicals from syngas. The paper compares both scenarios with regard to their respective technological choices and infrastructural changes. The scenarios’ particular opportunities and challenges are also discussed. Using possible future pathways of a major European petrochemical cluster as an example, the paper illustrates options for deep decarbonisation of energy intensive industries in the EU and beyond.
The Paris Agreement calls on all nations to pursue efforts to contribute to limiting the global temperature increase to 1.5 °C above pre-industrial levels. However, due to limited global, regional and country-specific analysis of highly ambitious GHG mitigation pathways, there is currently a lack of knowledge about the transformational changes needed in the coming decades to reach this target. Through a meta-analysis of mitigation scenarios for Germany, this article aims to contribute to an improved understanding of the changes needed in the energy system of an industrialized country. Differentiation among six key long-term energy system decarbonization strategies is suggested, and an analysis is presented of how these strategies will be pursued until 2050 in selected technologically detailed energy scenarios for Germany. The findings show, that certain strategies, including the widespread use of electricity-derived synthetic fuels in end-use sectors as well as behavioral changes, are typically applied to a greater extent in mitigation scenarios aiming at high GHG emission reductions compared to more moderate mitigation scenarios. The analysis also highlights that the pace of historical changes observed in Germany between 2000 and 2015 is clearly insufficient to adequately contribute to not only the 1.5 °C target, but also the 2 °C long-term global target.
Nach den G7-Beschlüssen von Elmau und dem Klimaabkommen von Paris im Jahr 2015 ist das Thema der langfristigen Dekarbonisierung der Energiesysteme der Industrieländer in den Vordergrund der politischen und wissenschaftlichen Diskussion gerückt. Japan und Deutschland stehen als führende Industrienationen vor ähnlichen Herausforderungen, gleichzeitig können sich aber auch für beide Länder wirtschaftliche Entwicklungschancen aus der Dekarbonisierung ergeben. Aus diesem Grund bietet sich eine verstärkte Kooperation und die Initiierung gegenseitiger Lernprozesse besonders an. Die vorliegende Metaanalyse ambitionierter Klimaschutzszenarien für Japan und Deutschland stellt mit der Diskussion von langfristigen Dekarbonisierungsstrategien in beiden Ländern einen ersten Schritt in diese Richtung dar.
Die quantitative Analyse hat gezeigt, dass die Untersuchungsschwerpunkte der Szenarien - sowohl für Deutschland als auch für Japan - vielfach auf den THG-Emissionen des Energiesystems liegen. Die THG-Emissionen anderer Sektoren werden seltener und wenn, dann oft in geringerer Detailtiefe berücksichtigt. Der Vergleich von ambitionierten Dekarbonisierungsszenarien mit THG-Minderungszielen von 80 bis 100 Prozent zeigt in vielen Bereichen für Japan und Deutschland tendenziell recht ähnliche Entwicklungen und Strategien auf. Es wird deutlich, dass in beiden Ländern erhebliche Änderungen insbesondere im Energiesystem notwendig sind, um die anvisierten mittel- und langfristigen THG-Minderungsziele zu erreichen. Es werden ähnliche Annahmen zu Bevölkerungsentwicklung und Wirtschaftsentwicklung getroffen und es werden vergleichbare Entwicklungstrends bei vielen Ausprägungen des Energiesystems deutlich. Unterschiede zwischen den deutschen und japanischen Szenarien sowie zwischen den Szenarien der einzelnen Länder bestehen hingegen vor allem in Bezug auf Geschwindigkeit, Umfang und die Zusammensetzung der Strategieelemente.
Die Landesregierung von Nordrhein-Westfalen hatte sich 2010 in ihrem Koalitionsvertrag zum Ziel gesetzt, einen Klimaschutzplan zu entwickeln, der die notwendigen Klimaschutzmaßnahmen zur Erreichung der Klimaschutzziele, inklusive von Zwischenzielen, konkret benennt.
Die Eckpunkte des Klimaschutzplanes wurden im Entwurf des Klimaschutzgesetzes (Landesregierung NRW 2011) beschrieben.
Grundlage der inhaltlichen Bearbeitung des Klimaschutzplanes ist eine szenariogestützte Auswahl notwendiger Klimaschutzstrategien und Klimaschutzmaßnahmen für NRW, durch welche die Klimaschutzziele der Landesregierung erreicht werden können. Für die Modellerstellung und die Diskussion von Klimaschutzmaßnahmen in den sektoralen Arbeitsgruppen zur Erstellung des Klimaschutzplanes waren umfangreiche Vorarbeiten notwendig. Dazu gehörte zentral eine Übersicht über die Emissionsminderungs- und Energieeffizienzpotenziale der einzelnen Sektoren in NRW. Dies ist auch explizit im Entwurf des Klimaschutzgesetzes unter § 6 gefordert. Aufgrund der kurzen Vorbereitungszeit zur Erstellung des Klimaschutzplanes war es nicht möglich, eine eigene umfassende Potenzialuntersuchung für ganz Nordrhein-Westfalen durchzuführen. Deswegen wurde im ersten Schritt ein Literaturscreening durchgeführt, in dem dargestellt wird, welche Potenzialuntersuchungen es für NRW in den einzelnen Sektoren gibt. Für diejenigen Bereiche, für die keine expliziten Untersuchungen für den Raum Nordrhein-Westfalen vorliegen, werden nationale Quellen herangezogen.
Aus der Literaturübersicht wurden die wichtigsten sektoralen Treibhausgasminderungs- und Effizienzpotenziale herausgezogen und so aufbereitet, dass sie im THG-Modell und als Vorlage für die sektoralen Arbeitsgruppen dienen können.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden.
Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert.
Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of the European Union (EU), in the light of the EU's climate change mitigation objectives. Trends on indicators such as energy intensity and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios for the electricity, residential, transport, and industry sectors. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that the EU has made significant progress in decarbonising its energy systems. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Rather than examining aggregate emissions trends, this study delves deep into the dynamics affecting each sector of the EU energy system. It examines the structural changes taking place in power production, transport, buildings and industry, and benchmarks these with the changes required to reach the 2030 and 2050 targets. In so doing it aims to influence both the ambition and direction of future policy decisions, both at Member State and EU level.
In order to assess the adequacy of the EU and its Member States policies with the 2030 and 2050 decarbonisation objectives, this study goes beyond the aggregate GHG emissions or energy use figures and analyse the underlying drivers of emission changes, following a sectoral approach (power generation, buildings, industry, and transport). Historical trends of emission drivers are compared with the required long-term deep decarbonisation pathways, which provide sectoral "benchmarks" or "corridors" against which to analyse the rate and direction of historical change for each Member State and the EU in aggregate. This approach allows the identification of the necessary structural changes in the energy system and policy interventions to reach deep decarbonisation, and therefore the comparison with the current policy programs at European and Member State level.
Für die Umsetzung der Energiewende und speziell den Ausbau erneuerbarer Energien sind nicht nur energiewirtschaftliche oder Klimaschutz-Kriterien maßgeblich. Zu einer umfassenden Nachhaltigkeitsbewertung gehört unter anderem auch die Ressourcenbewertung. Hier ist unstrittig, dass die Gesamt-Ressourceninanspruchnahme eines Energiesystems generell erheblich niedriger ist, wenn dieses nicht auf fossilen, sondern auf erneuerbaren Energien basiert (und dabei nicht hauptsächlich auf Biomasse ausgerichtet ist). Bisher wurde jedoch insbesondere der Verbrauch und die langfristige Verfügbarkeit der mineralischen Rohstoffe, die in der Regel zur Herstellung von Energiewandlern und Infrastruktur benötigt werden, wenig untersucht.
Im Rahmen des Projekts KRESSE wurde daher erstmals analysiert, welche "kritischen" mineralischen Rohstoffe für die Herstellung von Technologien, die Strom, Wärme und Kraftstoffe aus erneuerbaren Energien erzeugen, bei einer zeitlichen Perspektive bis zum Jahr 2050 in Deutschland relevant sind. Die Einschätzung als "kritisch" umfasst dabei die langfristige Verfügbarkeit der identifizierten Rohstoffe, die Versorgungssituation, die Recyclingfähigkeit und die Umweltbedingungen der Förderung. Die Studie macht deutlich, dass die geologische Verfügbarkeit mineralischer Rohstoffe für den geplanten Ausbau der erneuerbaren Energien in Deutschland grundsätzlich keine limitierende Größe darstellt. Dabei kann jedoch möglicherweise nicht jede Technologievariante unbeschränkt zum Einsatz kommen.
The German government has set itself the target of reducing the country's GHG emissions by between 80 and 95% by 2050 compared to 1990 levels. Alongside energy efficiency, renewable energy sources are set to play the main role in this transition. However, the large-scale deployment of renewable energies is expected to cause increased demand for critical mineral resources. The aim of this article is therefore to determine whether the transformation of the German energy system by 2050 ("Energiewende") may possibly be restricted by a lack of critical minerals, focusing primarily on the power sector (generating, transporting and storing electricity from renewable sources). For the relevant technologies, we create roadmaps describing a number of conceivable quantitative market developments in Germany. Estimating the current and future specific material demand of the options selected and projecting them along a range of long-term energy scenarios allows us to assess potential medium- or long-term mineral resource restrictions. The main conclusion we draw is that the shift towards an energy system based on renewable sources that is currently being pursued is principally compatible with the geological availability and supply of mineral resources. In fact, we identified certain sub-technologies as being critical with regard to potential supply risks, owing to dependencies on a small number of supplier countries and competing uses. These sub-technologies are certain wind power plants requiring neodymium and dysprosium, thin-film CIGS photovoltaic cells using indium and selenium, and large-scale redox flow batteries using vanadium. However, non-critical alternatives to these technologies do indeed exist. The likelihood of supplies being restricted can be decreased further by cooperating even more closely with companies in the supplier countries and their governments, and by establishing greater resource efficiency and recyclability as key elements of technology development.
The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.
The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions.
A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels?
In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.