Refine
Has Fulltext
- yes (91) (remove)
Year of Publication
Document Type
- Report (39)
- Conference Object (25)
- Peer-Reviewed Article (13)
- Working Paper (8)
- Contribution to Periodical (6)
Im Herbst 2001 veröffentlichte Bundeswirtschaftsminister Werner Müller einen viel diskutierten Energiebericht. Neben einer Bestandsaufnahme der deutschen Energie- und Klimapolitik befasst er sich auch mit einer Analyse der zukünftigen Entwicklungsmöglichkeiten des Energiesystems. Dabei steht die Frage im Vordergrund, ob und wenn ja, zu welchem Preis eine über das bisher von der Bundesregierung beschlossene Maß hinausgehende Minderung der CO2-Emissionen möglich ist. Referenzpunkt ist das Ziel, im Jahr 2020 eine CO2-Reduktion von 40 Prozent gegenüber dem Niveau des Jahres 1990 zu erreichen. In seinen Zukunftsaussagen basiert der Energiebericht im Wesentlichen auf einer Untersuchung von Prognos/EWI/Bremer Energieinstitut aus dem Frühjahr 2001. Der Energiebericht will mit dieser Zukunftsbetrachtung einen Beitrag zum energiepolitischen Diskurs leisten und eine intensive Diskussion entfachen. Das Wuppertal Institut stellt sich dieser Aufforderung mit vorliegender Antwort. Dabei sollen die Aussagen und Schlussfolgerungen des Energieberichts kritisch hinterfragt und eigenen Überlegungen gegenübergestellt werden.
Contemporary combined heat and power (CHP) systems are often based on fossil fuels, such as natural gas or heating oil. Thereby, small-scale cogeneration systems are intended to replace or complement traditional heating equipment in residential buildings. In addition to space heating or domestic hot water supply, electricity is generated for the own consumption of the building or to be sold to the electric power grid.
The adaptation of CHP-systems to renewable energy sources, such as solid biomass applications is challenging, because of feedstock composition and heat integration. Nevertheless, in particular smallscale CHP technologies based on biomass gasification and solid oxide fuel cells (SOFCs) offer significant potentials, also regarding important co-benefits, such as security of energy supply as well as emission reductions in terms of greenhouse gases or air pollutants. Besides emission or air quality regulations, the development of CHP technologies for clean on-site small-scale power generation is also strongly incentivised by energy efficiency policies for residential appliances, such as e.g. Ecodesign and Energy Labelling in the European Union (EU). Furthermore, solid residual biomass as renewable local energy source is best suited for decentralised operations such as micro-grids, also to reduce long-haul fuel transports. By this means such distributed energy resource technology can become an essential part of a forward-looking strategy for net zero energy or even smart plus energy buildings.
In this context, this paper presents preliminary impact assessment results and most recent environmental considerations from the EU Horizon 2020 project "FlexiFuel-SOFC" (Grant Agreement no. 641229), which aims at the development of a novel CHP system, consisting of a fuel flexible smallscale fixed-bed updraft gasifier technology, a compact gas cleaning concept and an SOFC for electricity generation. Besides sole system efficiencies, in particular resource and emission aspects of solid fuel combustion and net electricity effects need to be considered. The latter means that vastly less emission intensive gasifier-fuel cell CHP technologies cause significant less fuel related emissions than traditional heating systems, an effect which is further strengthened by avoided emissions from more emission intensive traditional grid electricity generation. As promising result, operation "net" emissions of such on-site generation installations may be virtually zero or even negative. Additionally, this paper scopes central regulatory instruments for small-scale CHP systems in the EU to discuss ways to improve the framework for system deployment.
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. It analysed progress of national policies by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Analysis of the National Energy Efficiency Action Plans (NEEAPs), the expert survey with input from over 1,100 experts on policy ambition and progress in each Member State, as well as 28 Country Reports have been central elements in EEW3. This paper will present the main conclusions and policy recommendations of EEW3. In doing so, it will first summarise the findings of the document analysis based on the 28 Country Reports, showing developments of energy efficiency policies since the second NEEAP in 2011 in a cross-country overview for six sectors. These findings are then contrasted with the experts' perspective on progress in energy efficiency policies in their countries as collected in the EEW survey. Moreover, ten case studies of good practice energy efficiency policies are shown, three of them will be presented in more detail. The paper ends with key policy conclusions for improving the effectiveness of European energy efficiency policies. A key finding is that policy implementation has improved a lot since 2011 but more is needed to achieve the EED Art. 7 and other targets.
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. EEW3 analysed the progress made in the implementation of energy efficiency policies in European Member States since the publication of the second National Energy Efficiency Action Plans (NEEAPs) in 2011 by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Results are presented in Country Reports for each of the 28 Member States, the Expert Survey Report, 10 Case Studies presenting outstanding energy efficiency policies in Europe, the Key Policy Conclusions, the project summary report in brochure format and this Feedback Loop Report, which summarises the overall EEW3 portfolio.
Improvements in energy efficiency have numerous impacts additional to energy and greenhouse gas savings. This paper presents key findings and policy recommendations of the COMBI project ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe").
This project aimed at quantifying the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. It covered the most relevant technical energy efficiency improvement actions in buildings, transport and industry.
Quantified impacts include reduced air pollution (and its effects on human health, eco-systems), improved social welfare (health, productivity), saved biotic and abiotic resources, effects on the energy system and energy security, and the economy (employment, GDP, public budgets and energy/EU-ETS prices). The paper shows that a more ambitious energy efficiency policy in Europe would lead to substantial impacts: overall, in 2030 alone, monetized multiple impacts (MI) would amount to 61 bn Euros per year in 2030, i.e. corresponding to approx. 50% of energy cost savings (131 bn Euros).
Consequently, the conservative CBA approach of COMBI yields that including MI quantifications to energy efficiency impact assessments would increase the benefit side by at least 50-70%. As this analysis excludes numerous impacts that could either not be quantified or monetized or where any double-counting potential exists, actual benefits may be much larger.
Based on these findings, the paper formulates several recommendations for EU policy making:
(1) the inclusion of MI into the assessment of policy instruments and scenarios,
(2) the need of reliable MI quantifications for policy design and target setting,
(3) the use of MI for encouraging inter-departmental and cross-sectoral cooperation in policy making to pursue common goals, and
(4) the importance of MI evaluations for their communication and promotion to decision-makers, stakeholders, investors and the general public.
Am 26. Januar 2019 hat die Kommission "Wachstum, Strukturwandel und Beschäftigung" beschlossen, dass in Deutschland bis spätestens 2038 keine Kohlekraftwerke mehr betrieben werden sollen. Das Wuppertal Institut nimmt in diesem Papier Stellung zu den Ergebnissen der Kommission und gibt Empfehlungen für die nun notwendigen Schritte für die Klima- und Innovationspolitik in Europa, Deutschland und Nordrhein-Westfalen.
On 26 January 2019, the Commission on Growth, Structural Change and Employment recommended that no more coal-fired power plants would be operated in Germany by 2038 at the latest. In this paper the Wuppertal Institute comments on the results of the Commission and makes recommendations for the current necessary steps for the climate and innovation policy in Europe, Germany and North Rhine-Westphalia.
The implementation of energy efficiency improvement actions not only yields energy and greenhouse gas emission savings, but also leads to other multiple impacts such as air pollution reductions and subsequent health and eco-system effects, resource impacts, economic effects on labour markets, aggregate demand and energy prices or on energy security. While many of these impacts have been studied in previous research, this work quantifies them in one consistent framework based on a common underlying bottom-up funded energy efficiency scenario across the EU. These scenario data are used to quantify multiple impacts by energy efficiency improvement action and for all EU28 member states using existing approaches and partially further developing methodologies. Where possible, impacts are integrated into cost-benefit analyses. We find that with a conservative estimate, multiple impacts sum up to a size of at least 50% of energy cost savings, with substantial impacts coming from e.g., air pollution, energy poverty reduction and economic impacts.