Refine
Year of Publication
Document Type
- Conference Object (49)
- Report (29)
- Peer-Reviewed Article (11)
- Working Paper (6)
- Part of a Book (4)
- Contribution to Periodical (2)
Language
- English (101) (remove)
Division
- Energie-, Verkehrs- und Klimapolitik (101) (remove)
Contemporary combined heat and power (CHP) systems are often based on fossil fuels, such as natural gas or heating oil. Thereby, small-scale cogeneration systems are intended to replace or complement traditional heating equipment in residential buildings. In addition to space heating or domestic hot water supply, electricity is generated for the own consumption of the building or to be sold to the electric power grid.
The adaptation of CHP-systems to renewable energy sources, such as solid biomass applications is challenging, because of feedstock composition and heat integration. Nevertheless, in particular smallscale CHP technologies based on biomass gasification and solid oxide fuel cells (SOFCs) offer significant potentials, also regarding important co-benefits, such as security of energy supply as well as emission reductions in terms of greenhouse gases or air pollutants. Besides emission or air quality regulations, the development of CHP technologies for clean on-site small-scale power generation is also strongly incentivised by energy efficiency policies for residential appliances, such as e.g. Ecodesign and Energy Labelling in the European Union (EU). Furthermore, solid residual biomass as renewable local energy source is best suited for decentralised operations such as micro-grids, also to reduce long-haul fuel transports. By this means such distributed energy resource technology can become an essential part of a forward-looking strategy for net zero energy or even smart plus energy buildings.
In this context, this paper presents preliminary impact assessment results and most recent environmental considerations from the EU Horizon 2020 project "FlexiFuel-SOFC" (Grant Agreement no. 641229), which aims at the development of a novel CHP system, consisting of a fuel flexible smallscale fixed-bed updraft gasifier technology, a compact gas cleaning concept and an SOFC for electricity generation. Besides sole system efficiencies, in particular resource and emission aspects of solid fuel combustion and net electricity effects need to be considered. The latter means that vastly less emission intensive gasifier-fuel cell CHP technologies cause significant less fuel related emissions than traditional heating systems, an effect which is further strengthened by avoided emissions from more emission intensive traditional grid electricity generation. As promising result, operation "net" emissions of such on-site generation installations may be virtually zero or even negative. Additionally, this paper scopes central regulatory instruments for small-scale CHP systems in the EU to discuss ways to improve the framework for system deployment.
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. EEW3 analysed the progress made in the implementation of energy efficiency policies in European Member States since the publication of the second National Energy Efficiency Action Plans (NEEAPs) in 2011 by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Results are presented in Country Reports for each of the 28 Member States, the Expert Survey Report, 10 Case Studies presenting outstanding energy efficiency policies in Europe, the Key Policy Conclusions, the project summary report in brochure format and this Feedback Loop Report, which summarises the overall EEW3 portfolio.
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. It analysed progress of national policies by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Analysis of the National Energy Efficiency Action Plans (NEEAPs), the expert survey with input from over 1,100 experts on policy ambition and progress in each Member State, as well as 28 Country Reports have been central elements in EEW3. This paper will present the main conclusions and policy recommendations of EEW3. In doing so, it will first summarise the findings of the document analysis based on the 28 Country Reports, showing developments of energy efficiency policies since the second NEEAP in 2011 in a cross-country overview for six sectors. These findings are then contrasted with the experts' perspective on progress in energy efficiency policies in their countries as collected in the EEW survey. Moreover, ten case studies of good practice energy efficiency policies are shown, three of them will be presented in more detail. The paper ends with key policy conclusions for improving the effectiveness of European energy efficiency policies. A key finding is that policy implementation has improved a lot since 2011 but more is needed to achieve the EED Art. 7 and other targets.
On 26 January 2019, the Commission on Growth, Structural Change and Employment recommended that no more coal-fired power plants would be operated in Germany by 2038 at the latest. In this paper the Wuppertal Institute comments on the results of the Commission and makes recommendations for the current necessary steps for the climate and innovation policy in Europe, Germany and North Rhine-Westphalia.
The implementation of energy efficiency improvement actions not only yields energy and greenhouse gas emission savings, but also leads to other multiple impacts such as air pollution reductions and subsequent health and eco-system effects, resource impacts, economic effects on labour markets, aggregate demand and energy prices or on energy security. While many of these impacts have been studied in previous research, this work quantifies them in one consistent framework based on a common underlying bottom-up funded energy efficiency scenario across the EU. These scenario data are used to quantify multiple impacts by energy efficiency improvement action and for all EU28 member states using existing approaches and partially further developing methodologies. Where possible, impacts are integrated into cost-benefit analyses. We find that with a conservative estimate, multiple impacts sum up to a size of at least 50% of energy cost savings, with substantial impacts coming from e.g., air pollution, energy poverty reduction and economic impacts.
There's no decarbonisation without energy efficiency : but take care of the "rebound effects"
(2013)
Target 2020 : policies and measures to reduce greenhouse gas emissions in the EU ; final report
(2005)
The German climate change programme (2000) identified the residential sector as one of the main sectors in which to achieve additional GHG reductions. Our case study compiles results of existing evaluations of the key policies and measures that were planned and introduced and carries out some own estimates of achievements. We show, which emission reductions and which instruments where planned and what was delivered until 2004.
Legal instruments such as the revised building code were introduced later than planned and their effects will - at least partly - fall behind expectations. Other legal instruments such as minimum energy performance standards for domestic appliances etc. were - in spite of the programme - not implemented yet.
On the other hand, substantial financial incentives were introduced. Especially schemes granting low-interest loans for building renovation were introduced. However tax subsidies for low-energy buildings were phased out.
In general we can conclude from our case study that Germany was not able to compensate for the slower or restricted implementation of legal instruments through the introduction of financial incentives. Particularly the efficient use of electricity has been left aside as almost no further policy action was taken since 2001.
Thus energy efficiency in the residential sector will not deliver the GHG reductions planned for in the German climate change programme until 2005. From our findings we draw conclusions and recommendations towards policy makers: Which lessons are to be learnt and what has to be done in order to fully harness EE potentials in residential sector as planned for 2010?
Toothless tiger? : Is the EU action plan on energy efficiency sufficient to reach its target?
(2007)
Motivated by, inter alia, the increasing energy prices, the security of energy supply and climate change, the new EU "Action Plan for Energy Efficiency: Realising the Potential" (EEAP), sets out the policies and measures required to be implemented over the next six years to achieve the EU's goal of reducing annual primary energy consumption by about 20 % by 2020. By increasing energy efficiency, the security of energy supply and the reduction of carbon emissions are also improved.
The paper will analyse the 20 % target of the new EEAP for the energy demand side by comparison with different recent energy scenarios for the EU. It will therefore review the recommended policies and measures and examine, in which energy demand sectors energy efficiency may be increased and to which extend. The main focus is whether the recommended policies and actions will be sufficient and which additional measures may be useful, if additional measures are needed.
Based on a comprehensive scenario analysis of the EU's GHG emissions by 2020, we show that the 20% energy savings target set in the Action Plan "Doing more with less" in 2006 is still the most significant and thus indispensable strategy element within an ambitious EU climate and energy strategy targeting at a 30% reduction of GHG emissions by 2020.
The scenario analysis provides a sector by sector projection of potential future energy use and GHG emissions, combined with a detailed policy analysis of the core policies on energy efficiency by the EU and its Member States taken from current research results by the authors and others.
Consequently the paper identifies and quantifies the current implementation deficit in the EU and shows that, despite of sufficient targets, implementation is still significantly lacking in almost all fields of energy efficiency. Some, e.g. transport sector and buildings, are still substantially far from receiving the necessary political impetus. The paper also demonstrates co-benefits of a strong energy efficiency strategy, e.g. the achievability of the targets of the RES directive, which crucially depends on a strong efficiency policy.
We conclude that the efforts of the energy efficiency policy of the EU and its Member States have to be significantly intensfied. As proposed by the EU in case that other developed and key developing countries take up comparable targets in order to fulfil its role in the climate and energy strategy. To achieve this, we offer an analysis of the current weaknesses of EU energy efficiency policy and derive recommendations on how the EU can still reach its targets for 2020.
Energy efficiency improvements have numerous benefits/impacts additional to energy and greenhouse gas savings, as has been shown and analysed e.g. in the 2014 IEA Report on "Multiple Benefits of Energy Efficiency". This paper presents the Horizon 2020-project COMBI ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe"), aiming at calculating the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. The project covers the most relevant technical energy efficiency improvement actions and estimates impacts of reduced air pollution (and its effects on human health, eco-systems/crops, buildings), improved social welfare (incl. disposable income, comfort, health, productivity), saved biotic and abiotic resources, and energy system, energy security, and the macroeconomy (employment, economic growth and public budget). This paper explains how the COMBI energy savings potential in the EU 2030 is being modelled and how multiple impacts are assessed. We outline main challenges with the quantification (choice of baseline scenario, additionality of savings and impacts, context dependency and distributional issues) as well as with the aggregation of impacts (e.g. interactions and overlaps) and how the project deals with them. As research is still ongoing, this paper only gives a first impression of the order of magnitude for additional multiple impacts of energy efficiency improvements may have in Europe, where this is available to date. The paper is intended to stimulate discussion and receive feedback from the academic community on quantification approaches followed by the project.
Improvements in energy efficiency have numerous impacts additional to energy and greenhouse gas savings. This paper presents key findings and policy recommendations of the COMBI project ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe").
This project aimed at quantifying the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in 2030. It covered the most relevant technical energy efficiency improvement actions in buildings, transport and industry.
Quantified impacts include reduced air pollution (and its effects on human health, eco-systems), improved social welfare (health, productivity), saved biotic and abiotic resources, effects on the energy system and energy security, and the economy (employment, GDP, public budgets and energy/EU-ETS prices). The paper shows that a more ambitious energy efficiency policy in Europe would lead to substantial impacts: overall, in 2030 alone, monetized multiple impacts (MI) would amount to 61 bn Euros per year in 2030, i.e. corresponding to approx. 50% of energy cost savings (131 bn Euros).
Consequently, the conservative CBA approach of COMBI yields that including MI quantifications to energy efficiency impact assessments would increase the benefit side by at least 50-70%. As this analysis excludes numerous impacts that could either not be quantified or monetized or where any double-counting potential exists, actual benefits may be much larger.
Based on these findings, the paper formulates several recommendations for EU policy making:
(1) the inclusion of MI into the assessment of policy instruments and scenarios,
(2) the need of reliable MI quantifications for policy design and target setting,
(3) the use of MI for encouraging inter-departmental and cross-sectoral cooperation in policy making to pursue common goals, and
(4) the importance of MI evaluations for their communication and promotion to decision-makers, stakeholders, investors and the general public.
The European Horizon 2020-project COMBI ("Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe") aims at estimating the energy and non-energy impacts that a realisation of the EU energy efficiency potential would have in the year 2030. The project goal is to cover the most important technical potentials identified for the EU27 by 2030 and to come up with consistent estimates for the most relevant impacts: air pollution (and its effects on human health, eco-systems/crops, buildings), social welfare (including disposable income, comfort, health and productivity), biotic and abiotic resources, the energy system and energy security and the macro economy (employment, economic growth and the public budget). This paper describes the overall project research design, envisaged methodologies, the most critical methodological challenges with such an ex-ante evaluation and with aggregating the multiple impacts. The project collects data for a set of 30 energy efficiency improvement actions grouped by energy services covering all sectors and EU countries. Based on this, multiple impacts will be quantified with separate methodological approaches, following methods used in the respective literature and developing them where necessary. The paper outlines the approaches taken by COMBI: socio-economic modelling for air pollution and social welfare, resource modelling for biotic/abiotic and economically unused resources, General Equilibrium modelling for long-run macroeconomic effects and other models for short-run effects, and the LEAP model for energy system modelling. Finally, impacts will be aggregated, where possible in monetary terms. Specific challenges of this step include double-counting issues, metrics, within and cross-country/regional variability of effects and context-specificity.
This article presents the findings of a European study on energy efficiency in the public sector, entitled "Public procurement of Energy Saving Technologies in Europe" (PROST), completed in 2003. Energy efficiency in the public sector goes far beyond energy savings and climate protection. Energy efficiency must be seen as a strategy, which deals both with scarce public funds and with profound energy and climate challenges. The gains to be made are substantial. The study assessed the potential for energy and cost savings and the greenhouse gas reductions that are linked to energy efficiency in the European public sector. To the knowledge of the authors, this is the first time such an analysis has been carried out. The study concluded that there are no fundamental legal obstacles that would a priori disable the public sector from procuring energy efficient technologies or applying energy efficiency considerations in its daily building management routines. However, at the level of implementation obstacles can occur. It is therefore of paramount importance that there is sufficient political will and adequate incentive systems at all relevant levels. It appeared to be particularly effective when public procurement is energy-efficiency minded in all its operations and life cycle costing is applied for investments instead of conventional public budgeting procedures. The study demonstrates that consistent and EU-wide application of these principles and instruments can result in rather substantial savings both in terms of energy and in terms of money. With additional annual investments in energy efficiency of 80 million Euro, energy savings in the (EU15) Member States' public sector worth up to 12 billion Euro per year can be achieved. A supplementary analysis was performed for a selection of the new Member States, which indicated that the potential for energy and fiscal savings is substantial in those countries as well.
Using natural gas for fuel releases less carbon dioxide per unit of energy produced than burning oil or coal, but its production and transport are accompanied by emissions of methane, which is a much more potent greenhouse gas than carbon dioxide in the short term. This calls into question whether climate forcing could be reduced by switching from coal and oil to natural gas. We have made measurements in Russia along the world's largest gas-transport system and find that methane leakage is in the region of 1.4%, which is considerably less than expected and comparable to that from systems in the United States. Our calculations indicate that using natural gas in preference to other fossil fuels could be useful in the short term for mitigating climate change.
How much energy saving is 1 % per year? : We still don t know, but we know better how to find out
(2009)
This paper presents the evaluation of a regional energy efficiency programme implemented in two "départements" of France. Électricité de France (EDF), a French energy company, provides refurbishment advice and financial incentives to end-users in the residential sector as well as specific training courses and certification to local installation contractors and building firms. Refurbishment measures analysed in this paper are efficient space heating equipment (condensing boilers, heat pumps and wood stoves or boilers), solar water heating systems and the installation of double-glazed windows. A billing analysis based on a survey of programme participants' energy consumption is used to calculate the energy savings attributed to the programme. In order to receive an economic feedback of this demonstration programme, the evaluation of both saved energy and programme costs is of importance. Detailed knowledge of the programme's cost-effectiveness is essential for EDF to achieve the saving obligations imposed by the French White Certificate scheme at the lowest cost. Results of this evaluation can support the development and implementation of further energy efficiency programmes with similar characteristics in other regions of France. The cost-effectiveness is determined from the perspective of the programme participant and the society as well as the energy company in charge of the programme. All cost and benefit components are calculated in Euro per kilowatt-hour, which allows a direct comparison of levelized costs of conserved energy with the avoidable costs of the energy supply system.