Refine
Year of Publication
Document Type
- Report (8)
- Peer-Reviewed Article (2)
- Part of a Book (1)
- Conference Object (1)
- Contribution to Periodical (1)
The Low Carbon Future Cities (LCFC) project aims at facing a three dimensional challenge by developing an integrated city roadmap balancing: low carbon development, gains in resource efficiency and adaptation to climate change. The paper gives an overview of the first outcomes of the analysis of the status quo and assessment of the most likely developments regarding GHG emissions, climate impacts and resource use in Wuxi - the Chinese pilot city for the LCFC project. As a first step, a detailed emission inventory following the IPCC guidelines for Wuxi has been carried out. In a second step, the future development of energy demand and related CO2 emissions in 2050 were simulated in a current policy scenario (CPS). In parallel, selected aspects of material and water flows for the energy and the building sector were analyzed and modeled. In addition, recent and future climate impacts and vulnerability were investigated. Based on these findings, nine key sectors with high relevance to the three dimensions could be identified. Although Wuxi's government has started a path to implement a low carbon plan, the first results show that, for the shift towards a sustainable low carbon development, more ambitious steps need to be taken in order to overcome the challenges faced.
Increasing urbanisation and climate change belong to the greatest challenges of the 21st century. A high share of global greenhouse gas emissions are estimated to originate in urban areas (40 % to 78 % according to UN Habitat 2010). Therefore, low carbon city strategies and concepts implicate large greenhouse gas (GHG) mitigation potentials. At the same time, with high population and infrastructure densities as well as concentrated economic activities, cities are particularly vulnerable to the impacts of climate change and need to adapt. Scarce natural resources further constrain the leeway for long-term, sustainable urban development. The Low Carbon Future Cities (LCFC) project aims at tapping this three-dimensional challenge and will develop an integrated strategy / roadmap, balancing low carbon development, gains in resource efficiency and adaptation to climate change. The study focuses on two pilot regions - one in China (Wuxi) and one in Germany (Düsseldorf+) - and is conducted by a German-Chinese research team supported by the German Stiftung Mercator. The paper gives an overview of first outcomes of the analysis of the status quo and assessment of the most likely developments regarding GHG emissions, climate impacts and resource use in Wuxi. The project developed an emission inventory for Wuxi to identify key sectors for further analysis and low carbon scenarios. The future development of energy demand and related CO2 emissions in 2030 were simulated in the current policy scenario (CPS), using five different sub-models. Selected aspects of Wuxi's current material and water flows were analysed and modelled for energy transformation and the building sector. Current and future climate impacts and vulnerability were investigated. Recent climatic changes and resulting damages were analysed, expected changes in temperature and precipitation in the coming four decades were projected using ensembles of three General Circulation Models. Although Wuxi's government started a path to implement a low carbon plan, the first results show that more ambitious efforts are needed to overcome the challenges faced.
Green hydrogen will play a key role in building a climate-neutral energy-intensive industry, as key technologies for defossilising the production of steel and basic chemicals depend on it. Thus, policy-making needs to support the creation of a market for green hydrogen and its use in industry. However, it is unclear how appropriate policies should be designed, and a number of challenges need to be addressed. Based on an analysis of the ongoing German debate on hydrogen policies, this paper analyses how policy-making for green hydrogen development may support industry defossilisation. For the assessment of policy instruments, a simplified multi-criteria analysis (MCA) is used with an innovative approach that derives criteria from specific challenges. Four challenges and seven relevant policy instruments are identified. The results of the MCA reveal the potential of each of the selected instruments to address the challenges. The paper furthermore outlines how instruments might be combined in a policy package that supports industry defossilisation, creates synergies and avoids trade-offs. The paper's impact may reach beyond the German case, as the challenges are not specific to the country. The results are relevant for policy-makers in other countries with energy-intensive industries aiming to set the course towards a hydrogen future.
Im Forschungsprojekt "Landscaping" untersuchte das Wuppertal Institut die für Nordrhein-Westfalen aus heutiger Sicht denkbaren Technologieansätze, die dafür nötigen politischen Rahmenbedingungen sowie mögliche Innovationen entlang der Wertschöpfungsketten. Bestandteil des Berichts sind Steckbriefe, in denen die möglichen Technologien für treibhausgasneutrale Industrieprozesse samt offener Forschungsfragen und Infrastrukturbedarfe dargestellt sind. Das Projekt entstand im Auftrag des Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.
Innerhalb des Projekts TFE-NRW bewertete das Wuppertal Institut den Forschungsbedarf für Energiewende-Technologien in Nordrhein-Westfalen. Ziel war es herauszufinden, welche Technologien und Forschungsbereiche im Rahmen der Energieforschung für Nordrhein-Westfalen (NRW) einen besonders hohen Stellenwert in Relation zur Bewertung für Deutschland haben könnten und für die eine besondere Unterstützung innerhalb der Energieforschung gerechtfertigt erscheint. Dabei sollten die speziellen Anforderungen des Bundeslandes berücksichtigt werden.
Betrachtet wurden 31 Technologiefelder aus den Bereichen erneuerbare Energien, konventionelle Kraftwerke, Infrastruktur, Technologien für die Sektorenkopplung (Power-to-X, P2X), energie- und ressourceneffiziente Gebäude, Energie- und Ressourceneffizienz in der Industrie und integrative Aspekte, die mithilfe eines Kriterienrasters qualitativ bewertet wurden.