Zukünftige Energie- und Industriesysteme
Refine
Year of Publication
Document Type
- Contribution to Periodical (399)
- Report (341)
- Peer-Reviewed Article (227)
- Part of a Book (207)
- Conference Object (135)
- Working Paper (57)
- Doctoral Thesis (22)
- Book (16)
- Lecture (3)
- Master Thesis (3)
Language
Division
Nigeria is Africa's top cement producer and could be on course to be one of the top producers globally. The goal of this study is to identify and critically examine the pathways available to Nigeria to meet its decarbonisation goals in the cement sector. Based on a literature review, the study assesses demand drivers and decarbonisation potentials for the sector. It then presents two different quantitative pathways for growth in production of cement by 2050, and three different pathways for decarbonisation of the sector. Using published data and a scenario analysis tool, the study calculates how the sector's emissions might evolve under each of these pathways. The results indicate that, in the most ambitious scenario, emissions from the sector can plateau by the late 2030s, resulting in an overall increase of 21% by 2050 (compared to 2015 levels). Achieving this scenario is necessary in order to put the sector on a path to net zero emissions beyond 2050. The scenario is driven by reductions in both energy-related and process emissions, as well as a small share of carbon capture and storage and demand management. A moderately ambitious scenario that relies mostly on savings on energy-related emissions results in an 84% increase in emissions by 2050. Finally, the Business-as-Usual scenario results in an almost tripling of emissions by 2050. The results indicate a strong potential for policies to drive improvements in energy efficiency and clinker-to-cement ratio. Critical areas of uncertainty within the assumptions include the production rates (including the evolution of the export market) and the fuel mix.
Direct Air Capture (DAC) is increasingly being discussed as a possibility to limit climate change. In this study, a possible rollout of the DAC technology at German coastal areas is analysed based on an existing climate neutrality scenario. For the year 2045 the resulting costs as well as land, water and energy consumption are examined. It is concluded that a realization of the DAC technology in Germany might be possible from a technical point of view. However, there is a high demand for land and energy. Since a rollout is needed to start in 20 years at the latest, the required discussion and evaluation should be initiated as quickly as possible.
Innovative digital technologies open up new opportun ities for small and medium-sized enterprises (SMEs) to improve energy efficiency and energy management behavior. The question is: How far will SMEs be capable of profiting from the benefits of these new technologies? Using technology screening, this study identifies smart metering and mobile energy monitoring as digital technologies best addressing SMEs' specific demands. In addition, potentials and limitations of the technologies are investigated in two qualitative in-depth field trials. Barriers to adopting digitally enabled energy management practices are examined. The results indicate that visualising energy data enables SMEs to pursue new energy management practices for reducing energy consumption and costs (such as peak load analysis). SMEs need extensive guidance to identify and pursue these strategies. In conclusion, an exploratory adoption model for digitally enabled energy management practices is developed. Hypotheses for future experimental studies and policy implications are derived.
A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in MENA countries has been developed and applied to the country case of Yemen. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision makers.
The transition towards REs is still at a quite early stage in Yemen. The military conflict has prevented the implementation of most of the planned large-scale renewable projects. The political instability, the high dependence on fossil fuels, and poor administrative performance are the most pressing concerns for Yemen's electricity sector. At an operational level, Yemen requires a total retrofit of the electricity infrastructure and needs to expand its overall capacity while improving its efficiencies.
Despite these challenges, rebuilding the energy system after the political turmoil and the subsequent violent conflicts could offer Yemen the capability to transition towards renewables. This will provide short-term and long-term opportunities and avoid stranded investments in fossil-fuel capacities.
The priority is to improve the framework conditions for RE in Yemen, starting with the development of a long-term strategy up to 2030 and beyond. Also, an appropriate and transparent legislation must be created. Furthermore, based on the legislation, clear regulations for REs must be introduced, and a realistic timeframe for expansion must be established in order to promote acceptance and market development on a large scale.
The results of the analysis along the transition phase model towards 100% RE are intended to stimulate and support the discussion on Yemen's future energy system by providing an over-arching guiding vision for the energy transition and the development of appropriate policies.
A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in the Middle East and North Africa (MENA) countries has been developed and applied to ten countries: Algeria, Egypt, Iraq, Israel, Jordan, Lebanon, Morocco, Palestine, Tunisia, and Yemen. This report synthesises the results of these ten studies.
The analysis shows that the state of the energy sector in the MENA region varies from country to country, but some underlying trends are present in all countries. In the majority of countries, energy prices are subsidised, and energy markets are mostly not liberalised. The energy demand in all analysed countries is growing and most grid systems are poorly interconnected across borders. Still, the expansion of RE in the MENA region can benefit from significant global progress and cost reductions in RE technologies.
Reducing greenhouse gas (GHG) emissions is not the only key driver for energy transition. In fact, the main motives for transition are that RE can help to meet growing demand, reduce dependence on imports, increase energy security, and provide opportunities for economic development.
All countries studied have RE targets. While some countries are on track to meet these targets, others need to increase their efforts to expand renewable electricity generation in order to meet their goals. Strong progress has been made in countries with limited fossil energy resources, while in some countries that produce and export large amounts of fossil energy resources, the energy transition is progressing rather slowly.
Community-based approaches to natural resource management are being discussed and experienced as promising ways for pursuing ecological conservation and socio-economic development simultaneously. However, the multiplicity of levels, scales, objectives and actors that are involved in sustainability transformations tends to be challenging for such bottom-up approaches. Collaborative and polycentric governance schemes are proposed for dealing with those challenges. What has not been fully explored is how knowledge from local contexts of community-based initiatives can be diffused to influence practices on higher levels and/or in other local contexts. This study explores how theoretical advances in the diffusion of grassroots innovation can contribute to understanding and supporting the diffusion of knowledge and practices from community-based initiatives and proposes a transdisciplinary approach to diffusion. For that aim, we develop an analytical perspective on the diffusion of grassroots innovations that takes into consideration the multiplicity of actors, levels and scales, the different qualities/types of knowledge and practices, as well as their respective contributions. We focus on the multiplicity and situatedness of cognitive frames and conceptualize the diffusion of grassroots innovations as a transdisciplinary process. In this way three different diffusion pathways are derived in which the knowledge and practices of grassroots initiatives can be processed in order to promote their (re)interpretation and (re)application in situations and by actors that do not share the cognitive frame and the local context of the originating grassroots initiative. The application of the developed approach is illustrated through transdisciplinary research for the diffusion of sustainable family farming innovations in Colombia. This conceptualization accounts for the emergence of multiplicity as an outcome of diffusion by emphasizing difference as a core resource in building sustainable futures.
Im Auftrag der Fraktion BÜNDNIS 90/DIE GRÜNEN im Bayerischen Landtag haben Forschende des Wuppertal Instituts wissenschaftlich überprüft, wie viele Treibhausgas-Emissionen im Jahr 2030 bestimmte landespolitische Klimaschutz-Maßnahmen potenziell einsparen können. Die vorliegende Studie schätzt dabei sowohl die Effekte der Maßnahmen auf die insgesamt verursachten Treibhausgas-Emissionen (Verursacherprinzip) als auch auf die in Bayern selbst statistisch erfassten Emissionen (Quellenprinzip) ab.
Die Maßnahmen adressieren die folgenden fünf Bereiche: 1) Gebäude und Verkehrsmittel im Besitz der öffentlichen Hand. 2) Ausbau der Windenergie und Photovoltaik. 3) Energieeffizienz im Gebäudesektor. 4) Energieeffizienz und Verkehrsverlagerung im Transportsektor. 5) Landwirtschaft und Landnutzung.
Zwei Beispiele der untersuchten Maßnahmen sind Verbesserungen der Rahmenbedingungen für den Bau neuer Windenergieanlagen und eine stärkere Nutzung des industriellen Abwärmepotenzials.
Transponder-based Aircraft Detection Lighting Systems (ADLS) are increasingly used in wind turbines to limit beacon operation times, reduce light emissions, and increase wind energy acceptance. The systems use digital technologies such as receivers of digital transponder signals, LTE/5G, and other information and communication technology. The use of ADLS will be mandatory in Germany both for new and existing wind turbines with a height of >100 m from 2023 (onshore) and 2024 (offshore), so a nationwide rollout is expected to start during 2022. To fully realize the benefits while avoiding risks and bottlenecks, a thorough and holistic understanding of the efforts required and the impacts caused along the life cycle of an ADLS is essential. Therefore, this study presents the first multi-aspect holistic evaluation of an ADLS. A framework for evaluating digital applications in the energy sector, previously developed by the authors, is refined and applied. The framework is based on multi-criteria analysis (MCA), life cycle assessment (LCA), and expert interviews. On an aggregated level, the MCA results show an overall positive impact from all stakeholders’ perspectives. Most positive impacts are found in the society and politics category, while most negative impacts are of technical nature. The LCA of the ADLS reveals a slightly negative impact, but this impact is negligible when compared to the total life cycle impact of the wind turbines of which the ADLS is a part. Besides the aggregated evaluation, detailed information on potential implementation risks, bottlenecks, and levers for life cycle improvement are presented. In particular, the worldwide scarcity of the required semiconductors, in combination with the general lack of technicians in Germany, lead to the authors’ recommendation for a limited prolongation of the planned rollout period. This period should be used by decision-makers to ensure the availability of technical components and installation capacities. A pooling of ADLS installations in larger regions could improve plannability for manufacturers and installers. Furthermore, an ADLS implementation in other countries could be supported by an early holistic evaluation using the presented framework.
The EU aims to become the first climate neutral continent. To achieve this goal, the industry sector needs to reduce its GHG emissions to net zero or at least close to net zero. This is a particularly challenging task due to the high energy demand especially of primary materials production and the little potential to reduce this energy intensity when switching to other production processes based on electricity or hydrogen. In order to identify robust strategies for achieving a net-zero-compatible industry sector, the paper at hand analyses the transformation of the industry sector as described by a number of recent climate neutrality scenarios for Germany. Apart from overall industry, a focus is set on the sectors of steel, chemicals and cement. The analysed scenarios show very deep GHG emission reductions in industry and they appear to be techno-economically feasible by the mid of the century, without relying on offsets or on shifts from domestic production to imports. The scenarios agree on a suite of core strategies to achieve this, such as direct and indirect electrification, energy efficiency and recycling as well as new technological routes in steel making and cement. The scenarios differ, however, regarding the future mix of electricity, hydrogen and biomass and regarding the future relevance of domestic production of basic chemicals.
Unvermeidbare Emissionen aus der Abfallbehandlung : Optionen auf dem Weg zur Klimaneutralität
(2022)
Auch die thermische Abfallbehandlung in Deutschland kann zu einem Baustein des klimaneutralen Wirtschaftens werden. Allerdings sind dafür noch verschiedene Voraussetzungen zu schaffen. Technisch sind neben den bereits bekannten weitere innovative Verfahren in der Entwicklung; nicht zu vernachlässigen ist zudem die anspruchsvolle Aufgabe des CO2-Handlings. Hier ist zum einen der Aufbau der benötigten Infrastruktur zu nennen. In Bezug auf die Nutzung des abgetrennten CO2 ist auch die Industrie gefragt, um sektorübergreifende, klimafreundliche Use-Cases und Geschäftsmodelle rund um CCU und die weitmöglichste Schließung von Kohlenstoffkreisläufen zu entwickeln. Entsprechende Regularien und Marktanreize sind politisch zu setzen.