Zukünftige Energie- und Industriesysteme
Refine
Has Fulltext
- no (60) (remove)
Year of Publication
Document Type
- Peer-Reviewed Article (60) (remove)
New options are needed to reduce the impact of motor vehicles on climate change and declining fossil fuel resources. Cars which are fueled by hydrogen could be a sustainable method of transportation if suitable technologies can be devised to produce hydrogen in an environmentally benign manner along with the provision of the necessary fueling infrastructure. This paper assesses size, space, and cost requirements of bioreactors as a decentralized option to supply hydrogen powered cars with biohydrogen produced from algae or cyanobacteria on a theoretical basis. Decentralized supply of biohydrogen could help to reduce the problems that hydrogen cars face regarding market penetration. A feasibility study for decentralized biohydrogen production is conducted, taking the quantity of hydrogen which is needed to fuel current hydrogen cars into account. While this technology is, in theory, feasible, sizes, and costs of such reactors are currently too high for widespread adoption. Thus, more R&D is needed to close the gap and to approach marketability.
The Port of Rotterdam is an important industrial cluster, comprising mainly oil refining, chemical production and power generation. In 2016, the port's industry accounted for 19% of the Netherlands' total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies, as most of its activities focus on trading, handling, converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods, our article explores three pathways whereby the port's industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU's assumed climate change mitigation ambitions and the key technological choices made by the cluster's companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.
Urban energy systems have been commonly considered to be socio-technical systems within the boundaries of an urban area. However, recent literature challenges this notion in that it urges researchers to look at the wider interactions and influences of urban energy systems wherein the socio-technical sphere is expanded to political, environmental and economic realms as well. In addition to the inter-sectoral linkages, the diverse agents and multilevel governance trends of energy sustainability in the dynamic environment of cities make the urban energy landscape a complex one. There is a strong case then for establishing a new conceptualisation of urban energy systems that builds upon these contemporary understandings of such systems. We argue that the complex systems approach can be suitable for this. In this paper, we propose a pilot framework for understanding urban energy systems using complex systems theory as an integrating plane. We review the multiple streams of urban energy literature to identify the contemporary discussions and construct this framework that can serve as a common ontological understanding for the different scholarships studying urban energy systems. We conclude the paper by highlighting the ways in which the framework can serve some of the relevant communities.
Nigeria is Africa's largest economy and home to approximately 10% of the un-electrified population of Sub-Saharan Africa. In 2017, 77 million Nigerians or 40% of the population had no access to affordable, reliable and sustainable electricity. In practice, diesel- and petrol-fuelled back-up generators supply the vast majority of electricity in the country. In Nigeria's nationally-determined contribution (NDC) under the Paris Agreement, over 60% of the greenhouse gas emissions (GHG) reductions are foreseen in the power sector. The goal of this study is to identify and critically examine the pathways available to Nigeria to meet its 2030 electricity access, renewables and decarbonization goals in the power sector. Using published data and stakeholder interviews, we build three potential scenarios for electrification and growth in demand, generation and transmission capacity. The demand assumptions incorporate existing knowledge on pathways for electrification via grid extension, mini-grids and solar home systems (SHS). The supply assumptions are built upon an evaluation of the investment pipeline for generation and transmission capacity, and possible scale-up rates up to 2030. The results reveal that, in the most ambitious Green Transition scenario, Nigeria meets its electricity access goals, whereby those connected to the grid achieve a Tier 3 level of access, and those served by sustainable off-grid solutions (mini-grids and SHS) achieve Tier 2. Decarbonization pledges would be surpassed in all three scenarios but renewable energy goals would only be partly met. Fossil fuel-based back-up generation continues to play a substantial role in all scenarios. The implications and critical uncertainties of these findings are extensively discussed.
Research on sustainability transitions has expanded rapidly in the last ten years, diversified in terms of topics and geographical applications, and deepened with respect to theories and methods. This article provides an extensive review and an updated research agenda for the field, classified into nine main themes: understanding transitions; power, agency and politics; governing transitions; civil society, culture and social movements; businesses and industries; transitions in practice and everyday life; geography of transitions; ethical aspects; and methodologies. The review shows that the scope of sustainability transitions research has broadened and connections to established disciplines have grown stronger. At the same time, we see that the grand challenges related to sustainability remain unsolved, calling for continued efforts and an acceleration of ongoing transitions. Transition studies can play a key role in this regard by creating new perspectives, approaches and understanding and helping to move society in the direction of sustainability.
Many countries are increasingly investing in renewable energy technologies to meet growing energy demands and increase the security of their energy supply. This development is also evident in the Middle East and North Africa (MENA) region, where renewable energy targets and policies have evolved rapidly in recent years. There is a steady increase in both the number of planned and implemented solar photovoltaic (PV) but also of solar thermal projects in form of Concentrating Solar Power (CSP) plants. Many of these installations are designed as large utility-scale systems. Despite the fact that these types of large-scale projects can have significant effects on local communities and their livelihoods, the existing research into the social impacts of such large-scale renewable energy infrastructures at local level is limited. However, assessing and managing these impacts is becoming increasingly important to reduce risks to both the affected communities and to the project and businesses activities. In order to provide more robust evidence on the local effects, this research study reviews the social impacts of large-scale renewable energy infrastructure in the MENA region based on a case study of the NOORo I CSP plant in Ouarzazate, Morocco. Data collected during two empirical field studies, in combination with expert interviews and secondary data analysis, provides detailed evidence on the type and significance of livelihood impacts of the NOORo I CSP plant. The analysis results in a consolidated list of 30 impacts and their significance levels for different stakeholder groups including farmers, young people, women, community representatives and owners of small and medium enterprises. The results show that, overall, the infrastructure development was received positively. The review also indicates that factors identified as having effects on the sustainability of local livelihoods are mainly related to information management and benefit distribution, rather than physical or material aspects.
Obwohl viele der aktuellen Herausforderungen im Bereich der Energieversorgung eine internationale Dimension haben bzw. nur international gelöst werden können, ist die internationale Energiepolitik bis heute ein weitgehend ungesteuerter Politikbereich. Im letzten Jahrzehnt entwickelten sich zwar neue globale Kooperationsstrukturen und Initiativen, der Weg zu einer multilateralen, globalen Governance-Struktur, die zentrale Impulse für die gemeinsame Etablierung international geltender Normen und Regeln geben könnte, ist aber noch weit. Der Artikel führt in die aktuellen Entwicklungen ein und diskutiert die verbleibenden Herausforderungen.
Energy system optimization models (ESOMs) such as MARKAL/TIMES are used to support energy policy analysis worldwide. ESOMs cover the full life-cycle of fuels from extraction to end-use, including the associated direct emissions. Nevertheless, the life-cycle emissions of energy equipment and infrastructure are not modelled explicitly. This prevents analysis of questions relating to the relative importance of emissions associated with the build-up of infrastructure and other equipment required for decarbonization.
Decarbonisation of energy systems requires deep structural change. The purpose of this research was to analyse the rates of change taking place in the energy systems of the European Union (EU), in the light of the EU's climate change mitigation objectives. Trends on indicators such as energy intensity and carbon intensity of energy were compared with decadal benchmarks derived from deep decarbonisation scenarios for the electricity, residential, transport, and industry sectors. The methodology applied provides a useful and informative approach to tracking decarbonisation of energy systems. The results show that the EU has made significant progress in decarbonising its energy systems. On a number of indicators assessed the results show that a significant acceleration from historical levels is required in order to reach the rates of change seen on the future benchmarks for deep decarbonisation. The methodology applied provides an example of how the research community and international organisations could complement the transparency mechanism developed by the Paris Agreement on climate change, to improve understanding of progress toward low-carbon energy systems.
Partizipative Irritationen : Reflexionen zum nachhaltigkeitsbezogenen Partizipationsgeschehen
(2017)
Die Beteiligungslandschaft wird im Kontext nachhaltiger Entwicklung und in der Perspektive der Politischen Psychologie betrachtet. Ausgangspunkt sind Wechselwirkungen zwischen politisch vermittelter und in Verbindung mit Nachhaltigkeit besonders geforderter Partizipationsnotwendigkeit einerseits und individuell empfundenem Vertrauensverlust in die Fähigkeit der Politik zur Lösung von Umweltproblemen andererseits. Betrachtet werden Partizipationsmotive der Politik (z.B. Steigerung von Legitimität) und Partizipationsmotive von Bürgerinnen und Bürgern (z.B. die "echte" Chance auf Mitentscheidung, insbesondere bei Verfahren mit starkem Regionalbezug). Beide Motive sind eingebettet in eine weitgehend entscheidungsferne "Partizipationsarchitektur". Die Verfahren liegen überwiegend auf einer informativen und auf einer konsultativen Ebene. Auch zeigen sich Diskrepanzen auf der Ebene der politischen Aufforderungen zur Partizipation. Diese erfolgen eher, wenn es um Problemlösungen geht und eher nicht, wenn es um Investitionen und wirtschaftliche Gewinne geht. Intensiv werden partizipative Ansätze im Kontext von Klimaschutz und Energiewende verfolgt. Doch auch diese Partizipationsangebote gehen selten über die informative Ebene hinaus. Inhaltlich sind v.a. technische Lösungsansätze zur Reduktion der CO2-Emissionen fixiert worden, hingegen wurden politische wie soziale Lösungsansätze überwiegend ausgespart. Insgesamt besteht die Gefahr partizipativer Irritationen bis hin zu Erschöpfung, wenn Bürgerinnen und Bürger einerseits zur Beteiligung aufgefordert und aktiviert werden, andererseits aber erfahren, dass sie im politischen Geschehen wenig bewirken können.
The contribution of the EU bioeconomy to sustainable development depends on how it is implemented. A high innovation potential is accompanied by considerable risks, in particular regarding the exacerbation of global land use conflicts. This article argues that a systemic monitoring system capable of connecting human-environment interactions and multiple scales of analysis in a dynamic way is needed to ensure that the EU bioeconomy transition meets overarching goals, like the Sustainable Development Goals. The monitoring should be centered around a dashboard of key indicators and targets covering environmental, economic, and social aspects of the bioeconomy. With a focus on the land dimension, this article examines the strengths and weakness of different economic, environmental and integrated models and methods for monitoring and forecasting the development of the EU bioeconomy. The state of research on key indicators and targets, as well as research needs to integrate these aspects into existing modeling approaches, are assessed. The article concludes with key criteria for a systemic bioeconomy monitoring system.
We present an approach to simulate climate and energy policy for the EU, using a flexible and modular agent-based modelling approach and a toolbox, called the Energy Modelling Laboratory (EMLab). The paper shortly reviews core challenges and approaches for modelling climate and energy policy in light of the energy transition. Afterwards, we present an agent-based model of investment in power generation that has addressed a variety of European energy policy questions. We describe the development of a flexible model core as well as modules on carbon and renewables policies, capacity mechanisms, investment behaviour and representation of intermittent renewables. We present an overview of modelling results, ongoing projects, a case study on current reforms of the EU ETS, and we show their relevance in the EU context.
"Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of "clean and green" projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.
Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany's climate protection targets. Previous research suggests that, since homeowners' decision-making processes are inadequately understood as yet, today's incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners' decision-making processes regarding insulation and to explore how situational factors, such as the structural condition of houses and social interaction, influence their insulation activity. Simulation experiments allow us furthermore to study the influence of socio-spatial structures such as residential segregation and population density on the diffusion of renovation behavior among homeowners. Based on the insights gained, we derive recommendations for designing innovative policy instruments. We conclude that the success of particular policy instruments aiming at increasing homeowners' insulation activity in a specific region depends on the socio-spatial structure at hand, and that reducing financial constraints only has a relatively low potential for increasing Germany's insulation rate. Policy instruments should also target the fact that specific renovation occasions are used to undertake additional insulation activities, e.g. by incentivizing lenders and craftsmen to advise homeowners to have insulation installed.
Energy systems across the globe are going through a radical transformation as a result of technological and institutional changes, depletion of fossil fuel resources, and climate change. At the local level, increasing distributed energy resources requires that the centralized energy systems be re-organized. In this paper, the concept of Integrated community energy systems (ICESs) is presented as a modern development to re-organize local energy systems to integrate distributed energy resources and engage local communities. Local energy systems such as ICESs not only ensure self-provision of energy but also provide essential system services to the larger energy system. In this regard, a comparison of different energy system integration option is provided. We review the current energy trends and the associated technological, socio-economic, environmental and institutional issues shaping the development of ICESs. These systems can be applied to both developed and developing countries, however, their objectives, business models as well as composition differs. ICESs can be accepted by different actors such as local governments, communities, energy suppliers and system operators as an effective means to achieve sustainability and thereby will have significant roles in future energy systems.
Understanding the diversifying role of civil society in Europe's sustainability pathway is a valid proposition both scientifically and socially. Civil society organisations already play a significant role in the reality of cities, what remains to be explored is the question: what is the role of civil society in the future sustainability of European cities? We first examine the novelty of new forms of civil society organization based on a thorough review of recent case studies of civil society initiatives for sustainable transitions across a diversity of European projects and an extensive literature review. We conceptualize a series of roles that civil society plays and the tensions they entail. We argue that, civil society initiatives can pioneer new social relations and practices therefore be an integral part of urban transformations and can fill the void left by a retreating welfare state, thereby safeguarding and servicing social needs but also backing up such a rolling back of the welfare state. It can act as a hidden innovator - contributing to sustainability but remaining disconnected from the wider society. Assuming each of these roles can have unintended effects, such as being proliferated by political agendas, which endanger its role and social mission, and can be peeled off to serve political agendas resulting in its disempowerment and over-exposure. We conclude with a series of implications for future research on the roles of civil society in urban sustainability transitions.
Auf dem Weg vom Energierohstoff zum Endnutzer entstehen Energieverluste durch Transport, Aufbereitung und Umwandlung, die dazu führen, dass der Primärenergieträger, also der Energierohstoff, nur mit einem bestimmten Nutzungsgrad in einen Endenergieträger (vom Endkunden eingekauften Energieträger für die Nutzung im Gebäude) umgewandelt wird. Der Kehrwert dieses Nutzungsgrades heißt "Primärenergiefaktor". Je größer der Primärenergiefaktor, desto größer die Verluste der Bereitstellung.