Kreislaufwirtschaft
Refine
Document Type
- Report (63)
- Contribution to Periodical (35)
- Peer-Reviewed Article (26)
- Part of a Book (13)
- Working Paper (12)
- Doctoral Thesis (2)
- Book (1)
Innerhalb des Projekts "Digitalisierung gestalten - Transformation zur Nachhaltigkeit ermöglichen" werden die besonderen Transformationspotenziale der Digitalisierung herausgearbeitet und für Deutschland am Beispiel der ausgewählten Handlungsfelder Mobilität, Circular Economy sowie Landwirtschaft und Ernährung diskutiert.
Dieser Bericht adressiert das Handlungsfeld einer klimaschonenden und ressourceneffizienten Kreislaufwirtschaft, die Circular Economy. Bisher wird Kreislaufwirtschaft dabei vor allem mit Fokus auf Recycling und Wiederverwertung von Materialien diskutiert. Das greift jedoch zu kurz - es muss um die Skalierung von neuen, ressourcenschonenden Geschäftsmodellen und der umfassenden Transformation von Wertschöpfungsketten und Industriestrukturen gehen.
Die Analyse zeigt: richtig eingesetzt ist Digitalisierung unverzichtbar für diesen Wandel.
Der vorliegende Bericht möchte Anstöße für diesen Weg liefern und neue Impulse für eine klima- und ressourcenschonende Industrietransformation in Deutschland setzen. Der Bericht verarbeitet dabei Ergebnisse eines interdisziplinären Workshops zum Thema "Die digital-ökologische Industrietransformation gestalten - Geschäftsmodelle und politische Rahmenbedingungen für Klima- und Ressourcenschutz" mit Expertinnen und Experten aus Forschung, Zivilgesellschaft, Behörden und Privatunternehmen.
Within the Shaping Digitalisation project, we aim to highlight and discuss the opportunities that digitalisation can bring to Germany. In particular, we are discussing three stand-out areas where action is most needed to achieve ecological transformation: mobility, the circular economy, and agriculture and food.
This report addresses the second area in need of action. Up until now, discussions on the circular economy have been limited to recycling and the re-use of materials. We must expand the scope of these discussions to include new, resource-efficient business models and the comprehensive transformation of value chains and industrial structures. Our analysis has found that digitalisation is indispensable for this transformation if used properly.
We hope this report will provide the impetus needed to kick-start a climate- and resource-friendly industrial transformation in Germany. Here, we have incorporated the findings of our interdisciplinary workshop on "Shaping the Digital-Ecological Industrial Transformation - Business Models and Political Framework Conditions for Climate and Resource Protection" that was attended by experts from international research institutes, civil organizations, public authorities, and private companies.
Kreislaufwirtschaft beschreibt ein Konzept, bei dem Abfall und Verschmutzung nicht per se im Wirtschaftsdesign vorausgesetzt werden. Sie greift damit die Ursachen der derzeit global dringlichsten Querschnittsthemen nachhaltiger Entwicklung mit dem Ziel auf, verantwortungsvoll mit Ressourcen, Wertstoffen, Produkten und der Umwelt umzugehen. Entstehen soll damit eine Welt, in der kein Müll produziert wird. Das Konzept verfolgt dabei einen multidimensionalen Ansatz und umfasst alle Wirtschaftsbereiche - von der Ressourcengewinnung über die Produktion, die Lagerung und den Konsum bis hin zur Entsorgung beziehungsweise zum Recycling. Mithilfe der Kreislaufwirtschaft können multiple Nachhaltigkeitsziele der Agenda 2030 schneller erreicht werden, weshalb sie als ein zentraler Baustein nachhaltiger Entwicklung gilt.
This paper analyses the potential of digital information technology to enable the reliable provision of product information along the plastics supply chain. The authors investigate the possible contribution of a product passport equipped with decentralised identifiers and verifiable credentials to overcome information deficits and information asymmetry in the circular plastics economy. Through this, high-quality plastics recycling could be enabled on a larger scale than currently possible.
How do recent changes in consumption in the wake of the COVID-19 pandemic affect the avoidance of packaging waste? How can an increase in packaging waste be countered and the previous trend towards unpackaged and reusable solutions be revived and promoted?
To tackle these questions, we use a systemic approach that regards packaging as a network of interrelated interests of industry (manufacturing and logistics), trade (retail and catering), consumers and the waste management sector. To analyse this network, we applied three methods. First, we analysed secondary sources such as surveys. Second, we conducted semi-structured interviews with seven actors from industry, consumer education and waste management in May and June 2020. Third, we used the questions from the interview guideline to do an online survey among representatives of the public waste management industry.
The construction sector is the second largest area for the application for plastics. Due to the long life times of construction products, the implementation of the circular economy faces its own challenges. To investigate this challenge, the study covers a market study for Germany, voluntary take-back and recycling schemes of construction products, as well as the use of plastic recyclates in construction products. In addition, plastic packaging of construction products is covered. Opportunities and barriers to the use of recycled plastics in construction products are derived from the intersection of available technologies, recyclate supply, and technical requirements for construction products. The report concludes with recommendations to various stakeholders on how to promote the use of recyclates in construction products and their packaging. Important points here are the introduction of a recyclate quota for films as construction product packaging and the description of recycling possibilities and recyclate content in the technical documentation of construction products.
The ultimate goal of German Resource Efficiency Programme (ProgRess) is to make the extraction and use of natural resources more sustainable and reduce associated environmental pollution as much as possible. By doing this - also with responsibility towards future generations - the programme should create a prerequisite for securing a long-term high quality of life. To bring the policy approaches formulated in ProgRess to reality, efforts to implement resource efficiency measures have to be increased at all levels - from international to regional to local.
The chapter intends to provide an impetus for the current debate on ProgRess policy development. The chapter identifies, analyses and describes deficits and possibilities of vertical integration of the German programme in particular and derives recommendations for action which may also serve as indications for other strategies. The following sections are based on results of the advisory report "Vertical integration of the national resource efficiency programme ProgRess (VertRess)", conducted by the German Institute of Urban Affairs (Difu) and the Wuppertal Institute for Climate, Environment and Energy on behalf of the German Environmental Agency (UBA) and the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU).
Supply risks and environmental concerns drive the interest in critical raw material recycling in the European Union. Globally, waste electrical and electronic equipment (WEEE) is projected to increase by almost 40% until 2030. This waste stream can be a source of secondary raw materials. The determination of the economic feasibility of recycling and recovering specific materials is a data-intensive, time-consuming, and case-specific task. This study introduced a two-part evaluation scheme consisting of upper continental crust concentrations and raw material prices as a simple tool to indicate the potential and limitations of critical raw material recycling. It was applied to the case of light-emitting diodes (LED) lamps in the EU. A material flow analysis was conducted, and the projected waste amounts were analyzed using the new scheme. Indium, gallium, and the rare earth elements appeared in low concentrations and low absolute masses and showed only a small revenue potential. Precious metals represented the largest revenue share. Future research should confirm the validity and usefulness of the evaluation scheme.
Nowadays, high expectations are set for a digitally enabled circular economy (CE), to enhance resource efficiency. Tracing, tracking, and storing information is most important for this. In this paper, the application of Internet of Things (IoT) and Distributed Ledger Technology (Blockchain) are hence discussed by presenting the case of professional Electrical and Electronic Equipment (EEE) in Italy. Within the context of CE, prevention of electronic waste (WEEE) is extremely relevant as it is a fast-growing waste stream, and the products contain environmentally damaging substances as well as valuable and rare materials. The use of a proper combination of IoT and blockchain can help the producers to keep control on products until EEE end-of-life, while promoting CE strategies and supporting decision-making. Based on the outcomes of five interviews conducted in 2019 to companies of the EEE sector, potential improvements in the EEE end-of-use management are discussed. After providing the definition of requirements for both the technical solution and its testing are provided, three solution variations and the related business models are created and presented, as well as considerations on their environmental and economic impacts. The study shows how digital technologies can support the appropriate and circular management of EEE products and WEEE.