Refine
Has Fulltext
- yes (52)
Year of Publication
Document Type
- Report (32)
- Peer-Reviewed Article (17)
- Conference Object (2)
- Master Thesis (1)
The sales of pedelecs are currently skyrocketing in Germany and in many other places. As a low-carbon means of mobility, pedelecs have the potential to make a substantial contribution to the mobility transition.
This thesis employs practice theory as proposed by Shove et al. (2012) to investigate this quickly evolving phenomenon. The analysis is based on interviews with e-bike commuters which were investigated using template analysis and exploratory memos. To obtain a broad picture the practice, a maximum variance sampling strategy was carried out in two cities that vary substantially with regard to velomobility: Wuppertal and Münster.
This thesis one hand presents the first encompassing account on the practice elements which commuting by pedelec is composed of. It hence contributes to the debate about the depiction of practices. Furthermore, the thesis finds that pedelec commuting should be conceptualized as a variant of velomobility and not as a variant of motoring or as an independent practice. Yet, the elements integrated in pedelec-commuting are found to clearly differ from those of cycling, so that pedelec-commuting meets the requirements of everyday life much better than commuting on non-electrified bikes.
The findings of this thesis suggest several pathways to strengthening this novel practice. The capacity of e-biking to serve mundane trips can for example be supported through the normalization of the use of weather- and transport relevant materials and competences. Deeper linkages with interacting practices from other sectors, such as an integration of cycling materials (GPS-trackers) into policing practices, can also con-tribute to this goal.
With regard to research, the present work offers starting points for quantifications, for example on the relative importance of single elements as well as on the characteristics of their relations among each other or with regard to typical constellations of elements.
The impending climate catastrophe gives rise to an increased environmental awareness among many designers, who direct their work towards the paradigm of sustainability. While designing with an "ecological lens" is necessarily oriented towards the future, we highlight the past as an inspiring realm to explore. Rather than recycling materials, we encourage the recycling of ideas as a combination of historiographic and speculative design methods.
We will present a framework that extends the idea of design as a "projecting" activity into the idea of design as a constant negotiation process about the relevance and appropriateness of current and past technologies. Design revolves not just about what will be, but to a large extent about what should remain and what should recur, or as Jan Michl put it: "seeing design as redesign" (Michl 2002). We will illustrate the thought of designing futures with pasts by means of a research project that aims at developing a refrigerator for circular economy. The refrigerator - as the currently dominant technology to preserve food - will serve as a starting point to show how artefacts and architecture as well as human skills and knowledge in the preparation and preservation of food are historically interlinked. The history of food preservation unfolds not only along the evolution of the refrigerator, but encompasses household techniques like smoking, curing and fermenting, as well as long-forgotten architectural "answers" such as deep-freeze community buildings. We will revisit three historical examples of food preservation and present the method ‘throwing’ past ideas into the future.
Three main arguments are presented in this richly illustrated paper: First, that historiography is a form of designing, second, that designing is constituted and influenced by path dependencies (cf. David 1985) that are deeply rooted in the past and third, that the past is a valuable source of inspiration when designing for sustainable development. Looking at history becomes a way of "mental window shopping" (Simon 1985, 188) for approaches that are to be reactivated and transformed.
Digital product passport : the ticket to achieving a climate neutral and circular European economy?
(2022)
The introduction of a Digital Product Passport (DPP) is an opportunity to create a system that can store and share all relevant information throughout a product's life cycle. This would provide industry stakeholders, businesses, public authorities and consumers with a better understanding of the materials used in the product as well as their embodied environmental impact.
With the COVID-19 pandemic, the Russian invasion of Ukraine and the cost-of-living crisis, now is a critical moment to transform our economic and business models, while also addressing the huge scale of material emissions. DPPs can be a pivotal policy instrument in this goal. Furthermore, DPPs can accelerate the twin green and digital transitions as part of EU efforts to deliver positive climate action and sustainable economies.
In 2020, the European Commission (EC) adopted a new Circular Economy Action Plan (CEAP), which emphasised the need for circular economy initiatives to consider the entire life cycle of products, from the production of basic materials to end-of-life disposal. The Circular Economy Package published in March 2022 includes a proposal for an Ecodesign for Sustainable Products Regulation (ESPR), which builds upon the Ecodesign Directive that covers energy-related products.
A DPP will form a key regulatory element of the ESPR by enhancing the traceability of products and their components. This will provide consumers and manufacturers with the information needed to make better informed choices by taking their environmental impact into consideration.
As discussed in the report, there is widespread agreement amongst business leaders that a well-designed DPP could have both short- and longer-term benefits, improving access to reliable and comparable product sustainability information for businesses, consumers and policymakers.
A well-designed DPP can unify information, making it more readily accessible to all actors in the supply chain. This will support businesses to ensure an effective transformation towards a decarbonised industry. It could also create incentives for companies to make their products more sustainable, as improving access to reliable and consistent information across supply chains will make it easier for customers to make comparisons.
The steel industry is responsible for a quarter of all industrial greenhouse gas emissions. So far, the environmental savings are mainly due to steel recycling. Besides recycling, the circular economy offers strategies to increase material efficiency and thus decrease the primary raw material demand. However, the potentials remain unexploited because circular economy concepts with a higher degree of circularity are not considered. The presented case study of an industrial machining knife illustrates how the production process can be improved by implementing various circular strategies. The environmental performance is analyzed by calculating and comparing the carbon footprint, the cumulative energy demand and the material footprint, and the material efficiency indicator. The results show that the implementation of the three overarching strategies of the circular economy - narrowing, closing, and slowing - contributes to a significant increase in material efficiency. The implementation also has a positive effect on the overall environmental performance. The circular production processes require less energy and resources and cause fewer emissions. Auxiliary processes such as additional transport routes are relevant, as they can reduce or even overcompensate for savings. These processes must be adequately considered and designed.
In material development processes, the question if a new alloy is more sustainable than the existing one becomes increasingly significant. Existing studies on metals and alloys show that their composition can make a difference regarding the environmental impact. In this case study, a recently developed air hardening forging steel is used to produce a U-bolt as an example component in automotive engineering. The production process is analyzed regarding the environmental performance and compared with the standard quench and tempering steels 42CrMo4 and 33MnCrB5-2. The analysis is based on results from applying the method of Life Cycle Assessment. First, the production process and the alterations on material, product, and process level are defined. The resulting process flows were quantified and attributed with the environmental impacts covering Carbon Footprint, Cumulative Energy Demand, and Material Footprint as they represent best the resource-, energy- and thus carbon-intensive steel industry. The results show that the development of the air hardening forging steel leads to a higher environmental impact compared to the reference alloys when the material level is considered. Otherwise, the new steel allows changes in manufacturing process, which is why an additional assessment on process level was conducted. It is seen that the air hardening forging steel has environmental savings as it enables skipping a heat treatment process. Superior material characteristics enable the application of lightweight design principles, which further increases the potential environmental savings. The present work shows that the question of the environmental impact does not end with analyzing the raw material only. Rather, the entire manufacturing process of a product must be considered. The case study also shows methodological questions regarding the specification of steel for alloying elements, processes in the metalworking industry and the data availability and quality in Life Cycle Assessment.
As the worldwide remaining carbon budget decreases rapidly, countries across the globe are searching for solutions to limit greenhouse gas emissions. As the production and use of coal is among the most carbon-intensive processes, it is foreseeable that coal regions will be particularly affected by the consequences of a transformation towards a climate-neutral economy and energy system.
Challenges arise in the area of energy production, environmental protection, but also for economic and social aspects in the transforming regions - often coined with the term "Just Transition". For the decision makers in coal regions, there is an urgent need for support tools that help to kick off measures to diversify the local economies while at the same time supporting the local workers and communities.
The Wuppertal Institute aims to support coal regions worldwide by developing a Just Transition Toolbox, which illustrates the challenges and opportunities of a sustainable transition for a global audience. It comprises information about strategy development, sets recommendations for governance structures, fostering sustainable employment, highlights technology options and sheds light on the environmental rehabilitation and repurposing of coal-related sites and infrastructure. The toolbox builds on the work of the Wuppertal Institute for the EU Initiative for Coal Regions in Transition and takes into account country-specific findings from the SPIPA-partner countries India, Indonesia, South Africa, Japan, South Korea, Canada and the USA. The acronym SPIPA is short for "Strategic Partnerships for the Implementation of the Paris Agreement" an EU-BMU programme co-financed by the GIZ.
This study presents in detail: the use of plastic products and the opportunities for recyclate use in the construction sector, quantities of plastic used, take-back systems, recycling techniques, current recyclate use and plastic construction product packaging.Potentials for increasing high-quality recyclate use were identified. Existing hurdles and options for action for industry and politics are presented. Current recyclate use as well as its potential use are strongly dependent on the application area of plastics. The biggest hurdles for the use of recycled materials are product life time, dismantling and technical requirements.
By use of macro-economic model EXIOMOD, the expected impacts of actions described in the Strategic Research and Innovation Agenda (SRIA) have been analyzed. The results of this analysis show that the R&I actions described in the SRIA contribute to decoupling economic growth from resource use. The actions are expected to cause an increasing gross domestic product and a decreasing raw material demand. This results in an increasing extracted resource productivity, a measure used to show the decoupling of economic growth and resource use. It can however be questioned whether the actions in the SRIA - or the measures implemented in the model - assume a strong enough pace for decoupling economic growth and material use. The actions contribute to the climate goals of the European Commission, by showing a pathway through which the emissions of greenhouse gas can be reduced.
The demand for metals from the entire periodic table is currently increasing due to the ongoing digitalization. However, their use within electrical and electronic equipment (EEE) poses problems as they cannot be recovered sufficiently in the end-of-life (EoL) phase. In this paper, we address the unleashed dissipation of metals caused by the design of EEE for which no globally established recycling technology exists. We describe the European Union's (EU) plan to strive for a circular economy (CE) as a political response to tackle this challenge. However, there is a lack of feedback from a design perspective. It is still unknown what the implications for products would be if politics were to take the path of a CE at the level of metals. To provide clarification in this respect, a case study for indium is presented and linked to its corresponding recycling-metallurgy of zinc and lead. As a result, a first material-specific rule on the design of so-called "anti-dissipative" products is derived, which actually supports designing EEE with recycling in mind and represents an already achieved CE on the material level. In addition, the design of electrotechnical standardization is being introduced. As a promising tool, it addresses the multi-dimensional problems of recovering metals from urban ores and assists in the challenge of enhancing recycling rates. Extending the focus to other recycling-metallurgy besides zinc and lead in further research would enable the scope for material-specific rules to be widened.
The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions.
A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels?
In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.