This chapter is an excerpt from a study commissioned by the European Parliament, which examines EU subsidies for agriculture, fisheries, transport, energy and regional development. Based on proven methodologies for the identification and assessment of environmentally harmful subsidies, the study assesses the sustainability level of the sectoral policies and makes recommendations for a reform that would contribute to the alignment of the EU budget towards a more sustainable growth. The following sections provide the main findings of one of the largest fields of expenditure within the EU budget, the structural and cohesion policy.
Consumption-based CO2 emissions, which are commonly calculated by means of environmentally extended input-output analysis, are gaining wider recognition as a way to complement territorial emission inventories. Although their use has increased significantly in the last years, insufficient attention has been paid to the methodological soundness of the underlying environmental extension. This should follow the internationally agreed accounting rules of the System of Environmental-Economic Accounting, which addresses the activities undertaken by the residents of a country, independent from where these take place. Nonetheless, some footprint calculations use extensions that account for all the activities within the territory, which leads to methodological inconsistencies. Thus, this article introduces the most relevant conceptual differences between these accounting frameworks and shows the magnitude of the gap between them building on the data generated for the EXIOBASE model. It concludes that the differences are high for many countries and their magnitude is increasing over time.
Measuring progress towards sustainable development requires appropriate frameworks and databases. The System of Environmental-Economic Accounts (SEEA) is undergoing continuous refinement with these objectives in mind. In SEEA, there is a need for databases to encompass the global dimension of societal metabolism. In this paper, we focus on the latest effort to construct a global multi-regional input-output database (EXIOBASE) with a focus on environmentally relevant activities. The database and its broader analytical framework allows for the as yet most detailed insight into the production-related impacts and "footprints" of our consumption. We explore the methods used to arrive at the database, and some key relationships extracted from the database.
Environmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3 - a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Energy system optimization models (ESOMs) such as MARKAL/TIMES are used to support energy policy analysis worldwide. ESOMs cover the full life-cycle of fuels from extraction to end-use, including the associated direct emissions. Nevertheless, the life-cycle emissions of energy equipment and infrastructure are not modelled explicitly. This prevents analysis of questions relating to the relative importance of emissions associated with the build-up of infrastructure and other equipment required for decarbonization.
Wasting food, wasting resources : potential environmental savings through food waste reductions
(2018)
Food is needed to maintain our physical integrity and therefore meets a most basic human need. The food sector got in the focus of environmental policy, because of its environmental implications and its inefficiency in terms of the amount of food lost along the value chain. The European Commission (EC) flagged the food waste issue a few years ago and adopted since then a series of policies that partially address the problem. Among these, the Resource Efficiency Roadmap set the aspirational goal of reducing the resource inputs in the food chain by 20% and halving the disposal of edible food waste by 2020. Focusing on consumer food waste, we tested what a reduction following the Roadmap's food waste target would imply for four environmental categories in EU28 (European Union 28 Member States): greenhouse gas emissions, land use, blue water consumption, and material use. Compared to the 2011 levels, reaching the target would lead to 2% to 7% reductions of the total footprint depending on the environmental category. This equals a 10% to 11% decrease in inputs in the food value chain (i.e., around half of the resource use reductions targeted). The vast majority of potential gains are related to households, rather than the food-related services. Most likely, the 2020 target will not be met, since there is insufficient action both at Member State and European levels. The Sustainable Development Goals provide a new milestone for reducing edible food waste, but Europe needs to rise up to the challenge of decreasing its per capita food waste generation by 50% by 2030.
Replacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO2 emissions related to the construction and deployment of the next generation of panels. Considering the varied energy mixes and penetration rates of renewable energies in different areas, several countries can experience similar time gaps between the installation of the first renewable power plants and the moment in which the emissions from their infrastructure are offset.
The analysis demonstrates that the time-profile of renewable energy emissions can be relevant for target-setting and detailed policy design, particularly when renewable energy strategies are pursued in concert with carbon pricing through cap-and-trade systems.
The number of input-output assessments focused on energy has grown considerably in the last years. Many of these assessments combine data from multi-regional input-output (MRIO) databases with energy extensions that completely or partially depict the different stages through which energy products are supplied or used in the economy.
The improper use of some energy extensions can lead to double accounting of some energy flows, but the frequency with which this happens and the potential impact on the results are unknown. Based on a literature review, we estimate that around a quarter of the MRIO-based energy assessments reviewed incurred into double accounting. Using the EXIOBASE MRIO database, we also analyse the effects of double accounting in the absolute values and rankings of different countries' and products' energy footprints.
Building on the insights provided by our analysis, we offer a set of key recommendations to MRIO users to avoid the double accounting problem in the future. Likewise, we conclude that the harmonisation of the energy data across MRIO databases led by experts could simplify the choices of the data users until the provision of official energy extensions by statistical offices becomes a widespread practice.