Refine
Year of Publication
Document Type
- Report (24)
- Peer-Reviewed Article (18)
- Conference Object (18)
- Part of a Book (5)
- Contribution to Periodical (4)
- Working Paper (1)
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.
With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.
Scenarios for the future of renewable energy through 2050 are reviewed to explore how much renewable energy is considered possible or desirable and to inform policymaking. Existing policy targets for 2010 and 2020 are also reviewed for comparison. Common indicators are shares of primary energy, electricity, heat, and transport fuels from renewables. Global, Europe-wide, and country-specific scenarios show 10% to 50% shares of primary energy from renewables by 2050. By 2020, many targets and scenarios show 20% to 35% share of electricity from renewables, increasing to the range 50% to 80% by 2050 under the highest scenarios. Carbon-constrained scenarios for stabilization of emissions or atmospheric concentration depict trade-offs between renewables, nuclear power, and carbon capture and storage (CCS) from coal, most with high energy efficiency. Scenario outcomes differ depending on degree of future policy action, fuel prices, carbon prices, technology cost reductions, and aggregate energy demand, with resource constraints mainly for biomass and biofuels.
Securing universal access to electricity by using renewable energy sources is technically feasible. A broad range of technological options, which can meet almost any requirements, are available. Solutions can comprise the connection of users to large distribution networks (on-grid solutions) or the application of power supply systems that can operate autonomously (off-grid and mini-grid solutions). This brochure concentrates on the latter solutions; technologies for large-scale distribution are not covered.