Electric mobility is beginning to enter East African cities. This paper aims to investigate what policy-level solutions and stakeholder constellations are established in the context of electric mobility (e-mobility) in Dar es Salaam, Kigali, Kisumu and Nairobi and in which ways they attempt to tackle the implementation of electric mobility solutions. The study employs two key methods including content analysis of policy and programmatic documents and interviews based on a purposive sampling approach with stakeholders involved in mobility transitions. The study findings point out that in spite of the growing number of policies (specifically in Rwanda and Kenya) and on-the-ground developments, a set of financial and technical barriers persists. These include high upfront investment costs in vehicles and infrastructure, as well as perceived lack of competitiveness with fossil fuel vehicles that constrain the uptake of e-mobility initiatives. The study further indicates that transport operators and their representative associations are less recognized as major players in the transition, far behind new e-mobility players (start-ups) and public authorities. This study concludes by identifying current gaps that need to be tackled by policymakers and stakeholders in order to implement inclusive electric mobility in East African cities, considering modalities that include transport providers and address their financial constraints.
Many cities all over the world highlight the need to transform their urban mobility systems into more sustainable ones, to confront pressing issues such as air and noise pollution, and to deliver on climate change mitigation action. While the support of innovations is high on the agenda of both national and local authorities, consciously phasing-out unsustainable technologies and practices is often neglected. However, this other side of the policy coin, "exnovation", is a crucial element for the mobility transition. We developed a framework to facilitate a more comprehensive assessment of urban mobility transition policies, systematically integrating exnovation policies. It links exnovation functions as identified in transition studies with insights from urban mobility studies and empirical findings from eight city case studies around the world. The findings suggest that most cities use some kinds of exnovation policies to address selective urban mobility issues, e.g., phasing-out diesel buses, restricting the use of polluting motor vehicles in some parts of the city, etc. Still, we found no evidence for a systematic exnovation approach alongside the innovation policies. Our framework specifies exnovation functions for the urban mobility transition by lining out policy levers and concrete measure examples. We hope that the framework inspires future in-depth research, but also political action to advance the urban mobility transition.
Cities around the globe are implementing innovative transport solutions as part of measures to address pertinent socio-economic and environmental challenges in urban areas and help drive the transition to low carbon development. Planning and implementing such solutions require an effective and collective approach that includes the needs and aspirations of all relevant stakeholders. In the planning and implementation of urban transport projects, capacity building components have assumed great significance but seem to be the most eluded activity for project implementers. The Living Lab concept, which allows for co-creation in innovation development, presents the opportunity to adopt innovative participatory approach in capacity building activities in transport projects; and is largely seen as a potential catalyst for rapid transformation to low carbon and sustainability transitions in cities. To this end, this paper highlights the usefulness of the Living Lab approach and provides some perspectives on how key elements of the approach are adapted in the process of assessing the capacity needs of nine (9) cities in planning and implementing e-mobility innovations. The cities are participating in an innovation research project. In the case studied, the project’s capacity needs assessment process was analyzed using an assessment framework built on four (4) key elements of the Living Lab approach, namely: extent of real-life contextualization, level of participation, diversity of stakeholders, and the time span of engagement. Insights from the assessment suggest that relevant project partners and city representatives with diverse expertise were actively involved from the onset and throughout the first 5 months of the project in defining and refining the capacity needs of partner cities based on local e-mobility conditions. This co-creative process helped determine priority areas where the need for capacity building mostly lied. Designing and operationalizing capacity building interventions tailored to the identified needs, as realized in the project, could therefore help build the necessary capacity and complement other measures aimed at developing e-mobility in the project’s partner cities.
Aiming at setting up a global platform for e-mobility solutions, the EU-funded project SOLUTIONSplus (2020-2023) established nine living labs in Africa, Asia, Europe, and Latin America to test innovative solutions involving new services, business models, vehicle types, and charging systems. A user needs analysis was undertaken in all project cities. The paper summarizes the main findings of this analysis and investigates the effect of the external environment on user needs. The perceived importance of electric vehicles in mobility patterns, quality of life, and city environment is examined, along with expected challenges in the respective market penetration. It is found that these perceptions are correlated with external factors such as air pollution or traffic congestion, leading to possible adjustments of the e-mobility promoting efforts according to the local stakeholder priorities.