Refine
Document Type
- Part of a Book (5)
- Report (3)
- Peer-Reviewed Article (2)
- Working Paper (2)
- Contribution to Periodical (1)
Division
Technical summary
(2012)
Technical summary
(2015)
Summary for policymakers
(2012)
For the option of “carbon capture and storage”, an integrated assessment in the form of a life cycle analysis and a cost assessment combined with a systematic comparison with renewable energies regarding future conditions in the power plant market for the situation in Germany is done. The calculations along the whole process chain show that CCS technologies emit per kWh more than generally assumed in clean-coal concepts (total CO2 reduction by 72-90% and total greenhouse gas reduction by 65-79%) and considerable more if compared with renewable electricity. Nevertheless, CCS could lead to a significant absolute reduction of GHG-emissions within the electricity supply system. Furthermore, depending on the growth rates and the market development, renewables could develop faster and could be in the long term cheaper than CCS based plants. Especially, in Germany, CCS as a climate protection option is phasing a specific problem as a huge amount of fossil power plant has to be substituted in the next 15 years where CCS technologies might be not yet available. For a considerable contribution of CCS to climate protection, the energy structure in Germany requires the integration of capture ready plants into the current renewal programs. If CCS retrofit technologies could be applied at least from 2020, this would strongly decrease the expected CO2 emissions and would give a chance to reach the climate protection goal of minus 80% including the renewed fossil-fired power plants.
Achieving a truly sustainable energy transition requires progress across multiple dimensions beyond climate change mitigation goals. This article reviews and synthesizes results from disparate strands of literature on the coeffects of mitigation to inform climate policy choices at different governance levels. The literature documents many potential cobenefits of mitigation for nonclimate objectives, such as human health and energy security, but little is known about their overall welfare implications. Integrated model studies highlight that climate policies as part of well-designed policy packages reduce the overall cost of achieving multiple sustainability objectives. The incommensurability and uncertainties around the quantification of coeffects become, however, increasingly pervasive the more the perspective shifts from sectoral and local to economy wide and global, the more objectives are analyzed, and the more the results are expressed in economic rather than nonmonetary terms. Different strings of evidence highlight the role and importance of energy efficiency for realizing synergies across multiple sustainability objectives.