Refine
Has Fulltext
- no (9)
Document Type
- Report (4)
- Part of a Book (2)
- Peer-Reviewed Article (1)
- Book (1)
- Contribution to Periodical (1)
Division
Because of high efficiency, low environmental impacts and a potential role in transforming our energy system into a hydrogen economy, fuel cells are often considered as a key technology for a sustainable energy supply. However, the future framing conditions under which stationary fuel cells have to prove their technical and economic competitiveness are most likely characterised by a reduced demand for space heating, and a growing contribution of renewable energy sources to heat and electricity supply, which both directly limit the potential for combined heat and power generation, and thus also for fuelcells. Taking Germany as a case study, this paper explores the market potential of stationaryfuelcells under the structural changes of the energy demand and supply system required to achieve asustainable energy supply. Results indicate that among the scenarios analysed it is in particular a strategy oriented towards ambitious CO2-reduction targets, which due to its changes in the supply structure is in a position to mobilise a market potential that might be large enough for a successful fuel cell commercialisation. However, under the conditions of a business-as-usual trajectory the sales targets of fuel cell manufacturers cannot be met.
The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's "Energy Technology Perspectives" baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed.