Refine
Year of Publication
Document Type
- Report (97)
- Conference Object (33)
- Peer-Reviewed Article (32)
- Part of a Book (31)
- Contribution to Periodical (25)
- Working Paper (9)
- Book (1)
- Doctoral Thesis (1)
- Lecture (1)
- Periodical Part (1)
Kernenergie : Rettung aus der drohenden Klimakatastrophe oder Hemmschuh für effektiven Klimaschutz?
(1996)
Energie
(1999)
Im Herbst 2001 veröffentlichte Bundeswirtschaftsminister Werner Müller einen viel diskutierten Energiebericht. Neben einer Bestandsaufnahme der deutschen Energie- und Klimapolitik befasst er sich auch mit einer Analyse der zukünftigen Entwicklungsmöglichkeiten des Energiesystems. Dabei steht die Frage im Vordergrund, ob und wenn ja, zu welchem Preis eine über das bisher von der Bundesregierung beschlossene Maß hinausgehende Minderung der CO2-Emissionen möglich ist. Referenzpunkt ist das Ziel, im Jahr 2020 eine CO2-Reduktion von 40 Prozent gegenüber dem Niveau des Jahres 1990 zu erreichen. In seinen Zukunftsaussagen basiert der Energiebericht im Wesentlichen auf einer Untersuchung von Prognos/EWI/Bremer Energieinstitut aus dem Frühjahr 2001. Der Energiebericht will mit dieser Zukunftsbetrachtung einen Beitrag zum energiepolitischen Diskurs leisten und eine intensive Diskussion entfachen. Das Wuppertal Institut stellt sich dieser Aufforderung mit vorliegender Antwort. Dabei sollen die Aussagen und Schlussfolgerungen des Energieberichts kritisch hinterfragt und eigenen Überlegungen gegenübergestellt werden.
Energy labelling for household appliances has become an established instrument to promote energy efficiency. For heating systems, however, this approach has not been successfully implemented yet. This is partially due to the reluctance of industry.
To find ways to motivate industry to participate in a labelling scheme, we carried out a survey among producers of heating systems. Respondents to our questionnaire and personal interviews cover together more than 30 percent of the EU market for heating systems. Thus the results provide a solid basis for conclusions.
Our survey helps to draw a much better picture of the attitudes and expectations of the manufacturers with regard to a labelling scheme. The paper covers:
Attitudes regarding potential effects of a label; Opinions on possible design of a label; Perceived effects of the labels for the companies; Perceived advantages and disadvantages of a label; And, as a conclusion, the potential effects on the companies and their probable relevance.
As a result, industry representatives expect that customers will be able to make sounder purchasing decisions because of the availability of a label. Therefore they believe that energy savings will be achieved. What is more, respondents expect that a label could improve integration of the European market for heating systems and would rather improve their individual economic performance.
The survey results in a clearer identification of industry's problems, needs and interests. It thus will help policy-makers to get industry to support energy efficiency labels and activities.
Angewandte Systemanalyse
(2008)
The Russian natural gas industry is the world's largest producer and transporter of natural gas. This paper aims to characterize the methane emissions from Russian natural gas transmission operations, to explain projects to reduce these emissions, and to characterize the role of emissions reduction within the context of current GHG policy. It draws on the most recent independent measurements at all parts of the Russian long distance transport system made by the Wuppertal Institute in 2003 and combines these results with the findings from the US Natural Gas STAR Program on GHG mitigation options and economics.
With this background the paper concludes that the methane emissions from the Russian natural gas long distance network are approximately 0.6% of the natural gas delivered. Mitigating these emissions can create new revenue streams for the operator in the form of reduced costs, increased gas throughput and sales, and earned carbon credits. Specific emissions sources that have cost-effective mitigation solutions are also opportunities for outside investment for the Joint Implementation Kyoto Protocol flexibility mechanism or other carbon markets.
Das Energiesystem klimaverträglich umbauen : Herausforderung an die deutsche und europäische Politik
(2007)
Development of alternative energy and climate scenarios for the Czech Republic : final report
(2009)
The need for an "Energy Roadmap 2050" triggered a multitude of studies that were conducted between 2009 and 2011, which again contained a multitude of decarbonisation scenarios, which achieve the EU's long-term emission mitigation target of reducing greenhouse gas emissions by at least 80% until 2050 (relative to 1990 emissions). The variety of important analysis is difficult to compare and utilize for specific and timely policy decisions. Thus the Smart Energy for Europe Platform (SEFEP) has commissioned a comparative study of relevant energy scenario studies for Europe. The findings of this comparative study are summarized here briefly.
Target 2020 : policies and measures to reduce greenhouse gas emissions in the EU ; final report
(2005)
Preventing the worst consequences of climate change would require that GHG emissions be reduced to levels near zero by the middle of the century. To respond to such a daunting challenge, we need to rethink and redesign the currently highly energy-dependent infrastructures of industrial societies and particularly the urban infrastructures to become low- or even zero-carbon cities. Sustainable urban infrastructures need technology. In this paper focused on Western European Cities, we discuss a wide set of technologies in the fields of building, energy and transport infrastructures that can significantly contribute to a reduction of energy and/or GHG emissions and are already available or are in the pipeline. Based on the review of a recent study for the city of Munich, we then present how a mix of these technologies could reduce CO2-emissions by up to 90% for the metropolis of 1.3 million inhabitants and that this strategy could be economically attractive despite a high initial investment.
All of the residential buildings of a city like Munich could be entirely redesigned for EUR 200 per inhabitant annually, which is about one third of an average annual natural gas bill.
Energy used in buildings is responsible for more than 40% of energy consumption and greenhouse gas (GHG) emissions of the EU and their share in cost-efficient GHG mitigation potentials is estimated to be even higher. In spite of its huge savings potential of up to 80%, achievements are very slow in the building sector and much stronger political action seems to be needed. One important step in this direction has been the recast of the Energy Performance of Buildings Directive (EPBD) in autumn 2009. However, strong national implementation including powerful packages of flanking measures seems to be crucial to really make significant progress in this important field. In order to directly improve political action, we provide a differentiated country-by-country bottom up simulation of residential buildings for the whole EU, Norway, Iceland, Croatia and Liechtenstein. The analysis provides a database of the building stock by construction periods, building types, as well as typical building sizes. It includes a simulation of the thermal quality and costs of the components of the building shell for new buildings as well as the refurbishment of the existing building stock. Based on this differentiated analysis, we show in detail what would be needed to accelerate energy savings in the building sector and provide a more precise estimate of the potentials to be targeted by particular policies. We demonstrate, e.g. that the potential of building codes set via the EPBD would be located mainly in those countries that already have quite stringent codes in place. We show as well the high relevance of accelerating refurbishments and re-investment cycles of buildings. By providing a clear estimate of the full costs related to such a strategy, we highlight a major obstacle to accelerated energy-efficient building renovation and construction.
Etude stratégique du mix energétique pour la production d'electricité en Tunisie : rapport final
(2012)
Germany's current efforts to decarbonize its electricity system are analysed. As nuclear power and fossil power plants equipped with carbon capture and storage were ruled out in 2011, renewable electricity generation (RES) together with electricity savings are the primary focus for achieving decarbonization. Germany aims to have RES account for at least 80% of its electricity by 2050. Achieving renewable generation needs strong political support and regulatory provisions for its market integration. Four main technical and regulatory challenges are the maintenance of a steady and efficient expansion of RES, the provision of balancing capacities, the realization of the targeted electricity savings, and the smart adaptation of the transport and distribution grid. An overview of the existing and planned regulatory provisions for decarbonization are described, and some gaps identified, particularly with regard to the overall management of the process, the inclusion of electricity savings and the interference of Germany's decarbonization strategies with neighbouring countries. Policies that both accelerate grid expansion and direct RES expansion should immediately be put in place and can be supported by a targeted mobilization of balancing capacities. Electricity savings are a significant and cost-efficient strategy for low-carbon electricity. Policy relevance: Germany is actively converting its national electricity system towards a fully renewable one. As renewable electricity has reached about a quarter of total consumption, a number of technical and regulatory challenges arise. Current discussions and plans are described for the four main challenges: maintaining and optimizing high investment rates into RES generation technologies, providing balancing capacities, reducing demand, and adapting the grid to the changing needs. Policy recommendations for these four tasks highlight the need to intensify electricity demand reduction and also consider the potential interactions between the German electricity system and its neighbouring countries.
The 2011 Japanese earthquake and tsunami, and the consequent accident at the Fukushima nuclear power plant, have had consequences far beyond Japan itself. Reactions to the accident in three major economies Japan, the UK, and Germany, all of whom were committed to relatively ambitious climate change targets prior to the accident are examined. In Japan and Germany, the accident precipitated a major change of policy direction. In the UK, debate has been muted and there has been essentially no change in energy or climate change policies. The status of the energy and climate change policies in each country prior to the accident is assessed, the responses to the accident are described, and the possible impacts on their positions in the international climate negotiations are analysed. Finally, the three countries' responses are compared and some differences between them observed. Some reasons for their different policy responses are suggested and some themes, common across all countries, are identified. Policy relevance: The attraction of nuclear power has rested on the promise of low-cost electricity, low-carbon energy supply, and enhanced energy independence. The Fukushima accident, which followed the Japanese tsunami of March 2011, has prompted a critical re-appraisal of nuclear power. The responses to Fukushima are assessed for the UK, Germany, and Japan. Before the accident, all three countries considered nuclear as playing a significant part in climate mitigation strategies. Although the UK Government has continued to support nuclear new build following a prompt review of safety arrangements, Japan and Germany have decided to phase out nuclear power, albeit according to different timescales. The factors that explain the different decisions are examined, including patterns of energy demand and supply, the wider political context, institutional arrangements, and public attitudes to risk. The implications for the international climate negotiations are also assessed.
Under the framework of the UN framework convention on climate change (UNFCCC) and its Kyoto Protocol the targets and strategies for the second and third commitment period ("post-2012") have to be discussed and set in the near future. Regarding the substantial emission reductions that have to be shouldered by the industrialized nations over the next two decades it is evident that all available potentials to mitigate greenhouse gas (GHG) emissions have to be harnessed and that energy efficiency has to play a key role.
To substantiate this we developed a comprehensive scenario analysis of the EU 25s energy system and other greenhouse gas emissions until 2020. Our analysis shows which key potentials to mitigate greenhouse gas emissions are available, by which policies and measures they are attainable
and which will be benefits of greenhouse gas mitigation measures.
By this analysis we show the mayor role of energy efficiency in all sectors and all member states. We demonstrate that a reduction of EU 25 greenhouse gas emissions by more than 30 % by 2020 is feasible, reasonable and - to a large extent - cost effective. We also develop a comprehensive policy package necessary to achieve ambitious Post-Kyoto targets.
The scenario analysis results in a clear identification of the needed strategies, policies and measures and especially the relevance of energy efficiency to achieve the necessary ambitious greenhouse gas reduction targets. It also clearly shows the costs and the benefits of such a policy compared to a business as usual case.
The German climate change programme (2000) identified the residential sector as one of the main sectors in which to achieve additional GHG reductions. Our case study compiles results of existing evaluations of the key policies and measures that were planned and introduced and carries out some own estimates of achievements. We show, which emission reductions and which instruments where planned and what was delivered until 2004.
Legal instruments such as the revised building code were introduced later than planned and their effects will - at least partly - fall behind expectations. Other legal instruments such as minimum energy performance standards for domestic appliances etc. were - in spite of the programme - not implemented yet.
On the other hand, substantial financial incentives were introduced. Especially schemes granting low-interest loans for building renovation were introduced. However tax subsidies for low-energy buildings were phased out.
In general we can conclude from our case study that Germany was not able to compensate for the slower or restricted implementation of legal instruments through the introduction of financial incentives. Particularly the efficient use of electricity has been left aside as almost no further policy action was taken since 2001.
Thus energy efficiency in the residential sector will not deliver the GHG reductions planned for in the German climate change programme until 2005. From our findings we draw conclusions and recommendations towards policy makers: Which lessons are to be learnt and what has to be done in order to fully harness EE potentials in residential sector as planned for 2010?
There is an extensive potential for GHG emission reductions in the new EU member states and the EU accession countries by improving energy efficiency, investing in renewable energy supply and other measures, part of which could be tapped by JI. However, the EU Emissions Trading System (EU ETS) and especially the recently adopted "Linking Directive" is probably going to have a significant impact on this JI potential. Especially two provisions are important:
The baseline of a project has to be based on the acquis communautaire, the environmental regulations of which are substantially higher than the Accession Countries' existing ones. Projects, which directly or indirectly reduce emissions from installations falling within the scope of the EU ETS, can only generate certificates if an equal number of EU allowances are cancelled. JI is thus put into direct competition with the EU ETS. In this paper we analyse the impact of these provisions first in theory and then country by country for six Central and East European countries that recently acceded the EU or are candidates for accession. As a result, we give an overview of the potential and the limitations of JI as an instrument for achieving emission reductions in the selected Accession Countries and provide important overview information to policy makers.