Refine
Year of Publication
Document Type
- Conference Object (12)
- Report (5)
- Peer-Reviewed Article (4)
- Working Paper (4)
- Book (1)
- Part of a Book (1)
Contemporary combined heat and power (CHP) systems are often based on fossil fuels, such as natural gas or heating oil. Thereby, small-scale cogeneration systems are intended to replace or complement traditional heating equipment in residential buildings. In addition to space heating or domestic hot water supply, electricity is generated for the own consumption of the building or to be sold to the electric power grid.
The adaptation of CHP-systems to renewable energy sources, such as solid biomass applications is challenging, because of feedstock composition and heat integration. Nevertheless, in particular smallscale CHP technologies based on biomass gasification and solid oxide fuel cells (SOFCs) offer significant potentials, also regarding important co-benefits, such as security of energy supply as well as emission reductions in terms of greenhouse gases or air pollutants. Besides emission or air quality regulations, the development of CHP technologies for clean on-site small-scale power generation is also strongly incentivised by energy efficiency policies for residential appliances, such as e.g. Ecodesign and Energy Labelling in the European Union (EU). Furthermore, solid residual biomass as renewable local energy source is best suited for decentralised operations such as micro-grids, also to reduce long-haul fuel transports. By this means such distributed energy resource technology can become an essential part of a forward-looking strategy for net zero energy or even smart plus energy buildings.
In this context, this paper presents preliminary impact assessment results and most recent environmental considerations from the EU Horizon 2020 project "FlexiFuel-SOFC" (Grant Agreement no. 641229), which aims at the development of a novel CHP system, consisting of a fuel flexible smallscale fixed-bed updraft gasifier technology, a compact gas cleaning concept and an SOFC for electricity generation. Besides sole system efficiencies, in particular resource and emission aspects of solid fuel combustion and net electricity effects need to be considered. The latter means that vastly less emission intensive gasifier-fuel cell CHP technologies cause significant less fuel related emissions than traditional heating systems, an effect which is further strengthened by avoided emissions from more emission intensive traditional grid electricity generation. As promising result, operation "net" emissions of such on-site generation installations may be virtually zero or even negative. Additionally, this paper scopes central regulatory instruments for small-scale CHP systems in the EU to discuss ways to improve the framework for system deployment.
The South African government started the development of a basic energy efficiency policy framework in 2005, including a voluntary label for refrigerators. This initial label was the intended precursor to a mandatory standards and labelling (S&L) programme, but the impacts achieved were only very limited. Based on this first experience, the South African Bureau of Standards (SABS) formed in 2008 a working group for the development of the new and more specific South African National Standard SANS 941. This standard identifies energy efficiency requirements, labelling and measurement methods as well as the maximum allowable standby power for a set of appliances as reliable basis for introducing a mandatory regulation. Nevertheless, due to many existing barriers, such as lack of funding and low priority assigned to the initiative, a very long period passed by between the S&L planning and final policy implementation. Finally, in November 2014, the South African government published mandatory performance standards coming into force in 2015/2016 for a first set of appliances consisting of refrigerators, washing machines, dryers, dishwashers, electric water heaters, ovens, A/C and heat pumps. To analyse the effectiveness of the new S&L programme and the potential influence of delays in the implementing process, the authors performed an immediate first-hand evaluation of the new policy.
As analytical reference base for available energy efficiency potentials, results from bottom-up scenario calculations will be presented exemplarily as case study for cold appliances covered by the S&L programme. A retrospective market study will show market trends before policy implementation and compare results with the new mandatory requirements. For the further policy analysis, a programme theory approach will be applied, in order to better understand why, how and under what conditions the policy works. Relationships with other energy efficiency policies and measures as well as positive or negative effects will be described. Furthermore, cause-impact relationships will be analysed to explain the functioning of the policy. Finally, success and failure factors will illustrate what needs to be done to achieve the desired energy efficiency targets. Henceforth, even though this study does not assess the direct transferability of the South African S&L programme to other regions, its findings could be relevant and useful for countries planning the implementation of similar policies.
Enhancing evaluations of future energy-related product policies with the digital product passport
(2022)
Biomass-fueled combined heat and power systems (CHPs) can potentially offer environmental benefits compared to conventional separate production technologies. This study presents the first environmental life cycle assessment (LCA) of a novel high-efficiency bio-based power (HBP) technology, which combines biomass gasification with a 199 kW solid oxide fuel cell (SOFC) to produce heat and electricity. The aim is to identify the main sources of environmental impacts and to assess the potential environmental performance compared to benchmark technologies. The use of various biomass fuels and alternative allocation methods were scrutinized. The LCA results reveal that most of the environmental impacts of the energy supplied with the HBP technology are caused by the production of the biomass fuel. This contribution is higher for pelletized than for chipped biomass. Overall, HBP technology shows better environmental performance than heat from natural gas and electricity from the German/European grid. When comparing the HBP technology with the biomass-fueled ORC technology, the former offers significant benefits in terms of particulate matter (about 22 times lower), photochemical ozone formation (11 times lower), acidification (8 times lower) and terrestrial eutrophication (about 26 times lower). The environmental performance was not affected by the allocation parameter (exergy or economic) used. However, the tested substitution approaches showed to be inadequate to model multiple environmental impacts of CHP plants under the investigated context and goal.
Digital product passport : the ticket to achieving a climate neutral and circular European economy?
(2022)
The introduction of a Digital Product Passport (DPP) is an opportunity to create a system that can store and share all relevant information throughout a product's life cycle. This would provide industry stakeholders, businesses, public authorities and consumers with a better understanding of the materials used in the product as well as their embodied environmental impact.
With the COVID-19 pandemic, the Russian invasion of Ukraine and the cost-of-living crisis, now is a critical moment to transform our economic and business models, while also addressing the huge scale of material emissions. DPPs can be a pivotal policy instrument in this goal. Furthermore, DPPs can accelerate the twin green and digital transitions as part of EU efforts to deliver positive climate action and sustainable economies.
In 2020, the European Commission (EC) adopted a new Circular Economy Action Plan (CEAP), which emphasised the need for circular economy initiatives to consider the entire life cycle of products, from the production of basic materials to end-of-life disposal. The Circular Economy Package published in March 2022 includes a proposal for an Ecodesign for Sustainable Products Regulation (ESPR), which builds upon the Ecodesign Directive that covers energy-related products.
A DPP will form a key regulatory element of the ESPR by enhancing the traceability of products and their components. This will provide consumers and manufacturers with the information needed to make better informed choices by taking their environmental impact into consideration.
As discussed in the report, there is widespread agreement amongst business leaders that a well-designed DPP could have both short- and longer-term benefits, improving access to reliable and comparable product sustainability information for businesses, consumers and policymakers.
A well-designed DPP can unify information, making it more readily accessible to all actors in the supply chain. This will support businesses to ensure an effective transformation towards a decarbonised industry. It could also create incentives for companies to make their products more sustainable, as improving access to reliable and consistent information across supply chains will make it easier for customers to make comparisons.